IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v112y2008i1p121-137.html
   My bibliography  Save this article

Implementing a near-optimal solution for the multi-stage, multi-product capacitated lot-sizing problem by rolling out a cyclical production plan

Author

Listed:
  • Van den broecke, Frank
  • Van Landeghem, Hendrik
  • Aghezzaf, El-Houssaine

Abstract

This paper describes the implementation and operational results of a cyclical master production-scheduling model, steering the manufacturing process of a photographic film-producing company. The involved company has a number one or two selling position in the medical and graphical film market. In film production all items are produced within two stages. The first stage is process-oriented and produces a limited number of intermediate products. The second stage is flow-shop oriented and cuts and slices the intermediate products into a large number of end products. In its search for a global optimum, the company wanted to synchronise operations by establishing a common replenishment period as a co-ördination mechanism between the first and second production stage. The proposed cyclical model uses a level-by-level approach and solves the economic lot-scheduling problem (ELSP). The cyclical model proved to be very robust when aligning with dynamic demand, allowing a synchronisation of operations. Based on the resulting schedule stability management lowered the levels of safety stock, which resulted in significant savings. This paper compares the cyclical model with the mathematical optimum, generated by solving the corresponding capacitated lot-sizing problem (CLSP). The results prove the ability of the proposed method to achieve a near optimal solution. The cyclical model does not suffer from the NP hardness of the CLSP and is, therefore, able to solve large-scale models.

Suggested Citation

  • Van den broecke, Frank & Van Landeghem, Hendrik & Aghezzaf, El-Houssaine, 2008. "Implementing a near-optimal solution for the multi-stage, multi-product capacitated lot-sizing problem by rolling out a cyclical production plan," International Journal of Production Economics, Elsevier, vol. 112(1), pages 121-137, March.
  • Handle: RePEc:eee:proeco:v:112:y:2008:i:1:p:121-137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(07)00131-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouenniche, Jamal & Boctor, Fayez F., 2001. "The two-group heuristic to solve the multi-product, economic lot sizing and scheduling problem in flow shops," European Journal of Operational Research, Elsevier, vol. 129(3), pages 539-554, March.
    2. Gregory Dobson, 1987. "The Economic Lot-Scheduling Problem: Achieving Feasibility Using Time-Varying Lot Sizes," Operations Research, INFORMS, vol. 35(5), pages 764-771, October.
    3. Salah E. Elmaghraby, 1978. "The Economic Lot Scheduling Problem (ELSP): Review and Extensions," Management Science, INFORMS, vol. 24(6), pages 587-598, February.
    4. Viswanathan, S. & Piplani, Rajesh, 2001. "Coordinating supply chain inventories through common replenishment epochs," European Journal of Operational Research, Elsevier, vol. 129(2), pages 277-286, March.
    5. Mohammad K. El-Najdawi & Paul R. Kleindorfer, 1993. "Common Cycle Lot-Size Scheduling for Multi-Product, Multi-Stage Production," Management Science, INFORMS, vol. 39(7), pages 872-885, July.
    6. VAN DEN BROECKE, Frank & VAN LANDEGHEM, Hendrik & AGHEZZAF, El-Houssaine, 2005. "An application of cyclical master production scheduling in a multi-stage, multi-product environment," LIDAM Reprints CORE 1785, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. C. Loren Doll & D. Clay Whybark, 1973. "An Iterative Procedure for the Single-Machine Multi-Product Lot Scheduling Problem," Management Science, INFORMS, vol. 20(1), pages 50-55, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dobrzykowski, David & Saboori Deilami, Vafa & Hong, Paul & Kim, Seung-Chul, 2014. "A structured analysis of operations and supply chain management research in healthcare (1982–2011)," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 514-530.
    2. Sazvar, Z. & Mirzapour Al-e-hashem, S.M.J. & Govindan, K. & Bahli, B., 2016. "A novel mathematical model for a multi-period, multi-product optimal ordering problem considering expiry dates in a FEFO system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 232-261.
    3. Holmbom, Martin & Segerstedt, Anders, 2014. "Economic Order Quantities in production: From Harris to Economic Lot Scheduling Problems," International Journal of Production Economics, Elsevier, vol. 155(C), pages 82-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holmbom, Martin & Segerstedt, Anders, 2014. "Economic Order Quantities in production: From Harris to Economic Lot Scheduling Problems," International Journal of Production Economics, Elsevier, vol. 155(C), pages 82-90.
    2. Beck, Fabian G. & Biel, Konstantin & Glock, Christoph H., 2019. "Integration of energy aspects into the economic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 399-410.
    3. Khouja, Moutaz & Michalewicz, Zgibniew & Wilmot, Michael, 1998. "The use of genetic algorithms to solve the economic lot size scheduling problem," European Journal of Operational Research, Elsevier, vol. 110(3), pages 509-524, November.
    4. G-C Lee & Y-D Kim & J-G Kim & S-H Choi, 2003. "A dispatching rule-based approach to production scheduling in a printed circuit board manufacturing system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1038-1049, October.
    5. Serge M. Karalli & A. Dale Flowers, 2006. "The Multiple-Family ELSP with Safety Stocks," Operations Research, INFORMS, vol. 54(3), pages 523-531, June.
    6. Vidal-Carreras, Pilar I. & Garcia-Sabater, Jose P. & Coronado-Hernandez, Jairo R., 2012. "Economic lot scheduling with deliberated and controlled coproduction," European Journal of Operational Research, Elsevier, vol. 219(2), pages 396-404.
    7. Fransoo, Jan C. & Sridharan, V. & Bertrand, J.Will M., 1995. "A hierarchical approach for capacity coordination in multiple products single-machine production systems with stationary stochastic demands," European Journal of Operational Research, Elsevier, vol. 86(1), pages 57-72, October.
    8. Hoque, M.A. & Kingsman, B.G., 2006. "Synchronization in common cycle lot size scheduling for a multi-product serial supply chain," International Journal of Production Economics, Elsevier, vol. 103(1), pages 316-331, September.
    9. Salvietti, Luciano & Smith, Neale R., 2008. "A profit-maximizing economic lot scheduling problem with price optimization," European Journal of Operational Research, Elsevier, vol. 184(3), pages 900-914, February.
    10. Carstensen, Peter, 1997. "Das Economic Lot Scheduling Problem: Überblick und LP-basiertes Verfahren," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 465, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Briskorn, Dirk & Zeise, Philipp & Packowski, Josef, 2016. "Quasi-fixed cyclic production schemes for multiple products with stochastic demand," European Journal of Operational Research, Elsevier, vol. 252(1), pages 156-169.
    12. Khouja, Moutaz, 1997. "The scheduling of economic lot sizes on volume flexible production systems," International Journal of Production Economics, Elsevier, vol. 48(1), pages 73-86, January.
    13. Wagner, Bret J. & Davis, Darwin J., 2002. "A search heuristic for the sequence-dependent economic lot scheduling problem," European Journal of Operational Research, Elsevier, vol. 141(1), pages 133-146, August.
    14. Grznar, J. & Riggle, C., 1997. "An optimal algorithm for the basic period approach to the economic lot scheduling problem," Omega, Elsevier, vol. 25(3), pages 355-364, June.
    15. Sağlam, Ümit & Banerjee, Avijit, 2018. "Integrated multiproduct batch production and truck shipment scheduling under different shipping policies," Omega, Elsevier, vol. 74(C), pages 70-81.
    16. Ramesh Bollapragada & Uday Rao, 1999. "Single-Stage Resource Allocation and Economic Lot Scheduling on Multiple, Nonidentical Production Lines," Management Science, INFORMS, vol. 45(6), pages 889-904, June.
    17. Robert R. Inman & Philip C. Jones & Guillermo M. Gallego, 1991. "Economic lot scheduling of fully loaded processes with external setups," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 699-713, October.
    18. David M. Markowitz & Martin I. Reiman & Lawrence M. Wein, 2000. "The Stochastic Economic Lot Scheduling Problem: Heavy Traffic Analysis of Dynamic Cyclic Policies," Operations Research, INFORMS, vol. 48(1), pages 136-154, February.
    19. Brander, Par & Forsberg, Rolf, 2006. "Determination of safety stocks for cyclic schedules with stochastic demands," International Journal of Production Economics, Elsevier, vol. 104(2), pages 271-295, December.
    20. Kirschstein, Thomas, 2018. "Planning of multi-product pipelines by economic lot scheduling models," European Journal of Operational Research, Elsevier, vol. 264(1), pages 327-339.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:112:y:2008:i:1:p:121-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.