IDEAS home Printed from https://ideas.repec.org/a/wly/natres/v47y2023i4p672-698.html
   My bibliography  Save this article

Untapped potentials on a well‐endowed plate: A sustainable future catalogue for the harmony of renewable technologies with the water‐energy‐climate‐SDGs nexus

Author

Listed:
  • Sera Şanlı

Abstract

This study aims to present a roadmap on which optimal solutions can be adopted for a sustainable water and energy management by focusing on the relationships among “Sustainable Development Goals (SDGs)”, “Water‐Energy”, “Innovation‐Technology” and “Capacity‐Generation” blocks. The findings reveal that technological innovations are the core of sustainable solutions. An optimal bundle for policy tools should take SDG3, SDG10, SDG11, SDG12, SDG16, CH4‐N2O emissions, access to clean fuels, wastewater treatment and COVID‐19 major drivers into account primarily to explain the water‐energy nexus. Among the five worst‐performing technologies are hydrogen, CCUS, fuel cells, energy efficiency and electromobility‐electric energy management. Considering the constructed four scenarios together; levelized cost of electricity, global horizontal irradiation and photovoltaic (PV) power output seasonality are the only significant PV potential indicators despite their low impacts.

Suggested Citation

  • Sera Şanlı, 2023. "Untapped potentials on a well‐endowed plate: A sustainable future catalogue for the harmony of renewable technologies with the water‐energy‐climate‐SDGs nexus," Natural Resources Forum, Blackwell Publishing, vol. 47(4), pages 672-698, November.
  • Handle: RePEc:wly:natres:v:47:y:2023:i:4:p:672-698
    DOI: 10.1111/1477-8947.12302
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1477-8947.12302
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1477-8947.12302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Hale & Noam Angrist & Rafael Goldszmidt & Beatriz Kira & Anna Petherick & Toby Phillips & Samuel Webster & Emily Cameron-Blake & Laura Hallas & Saptarshi Majumdar & Helen Tatlow, 2021. "A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)," Nature Human Behaviour, Nature, vol. 5(4), pages 529-538, April.
    2. Michel Tenenhaus & Arthur Tenenhaus & Patrick J. F. Groenen, 2017. "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 737-777, September.
    3. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    4. Vinod, H. D., 1976. "Canonical ridge and econometrics of joint production," Journal of Econometrics, Elsevier, vol. 4(2), pages 147-166, May.
    5. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    6. Michel Tenenhaus, 2011. "Regularized generalized canonical correlation analysis," Post-Print hal-00578321, HAL.
    7. Arthur Tenenhaus & Michel Tenenhaus, 2011. "Regularized Generalized Canonical Correlation Analysis," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 257-284, April.
    8. Michel Tenenhaus & Arthur Tenenhaus, 2011. "Regularized Generalized Canonical Correlation Analysis," Post-Print hal-00609220, HAL.
    9. Khaled Obaideen & Abdul Ghani Olabi & Yaser Al Swailmeen & Nabila Shehata & Mohammad Ali Abdelkareem & Abdul Hai Alami & Cristina Rodriguez & Enas Taha Sayed, 2023. "Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs)," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    10. Yan Li & Ruilian Zhang, 2023. "A Review of Water-Energy-Food Nexus Development in a Just Energy Transition," Energies, MDPI, vol. 16(17), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boyi Guo & Hannah D. Holscher & Loretta S. Auvil & Michael E. Welge & Colleen B. Bushell & Janet A. Novotny & David J. Baer & Nicholas A. Burd & Naiman A. Khan & Ruoqing Zhu, 2023. "Estimating Heterogeneous Treatment Effect on Multivariate Responses Using Random Forests," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(3), pages 545-561, December.
    2. Lukáš Malec & Vladimír Janovský, 2020. "Connecting the multivariate partial least squares with canonical analysis: a path-following approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 589-609, September.
    3. Cruz-Cano, Raul & Lee, Mei-Ling Ting, 2014. "Fast regularized canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 88-100.
    4. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    5. Tenenhaus, Arthur & Philippe, Cathy & Frouin, Vincent, 2015. "Kernel Generalized Canonical Correlation Analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 114-131.
    6. Heungsun Hwang & Gyeongcheol Cho, 2020. "Global Least Squares Path Modeling: A Full-Information Alternative to Partial Least Squares Path Modeling," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 947-972, December.
    7. Wang, Wenjia & Zhou, Yi-Hui, 2021. "Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    8. Joseph F. Hair & G. Tomas M. Hult & Christian M. Ringle & Marko Sarstedt & Kai Oliver Thiele, 2017. "Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods," Journal of the Academy of Marketing Science, Springer, vol. 45(5), pages 616-632, September.
    9. Stéphanie Bougeard & Hervé Abdi & Gilbert Saporta & Ndèye Niang, 2018. "Clusterwise analysis for multiblock component methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 285-313, June.
    10. Cristina Davino & Pasquale Dolce & Stefania Taralli & Domenico Vistocco, 2022. "Composite-Based Path Modeling for Conditional Quantiles Prediction. An Application to Assess Health Differences at Local Level in a Well-Being Perspective," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(2), pages 907-936, June.
    11. Marcela Guachamín & Diana Ramírez‐Cifuentes & Olga Delgado, 2020. "An Uncertainty Thermometer to Measure the Macroeconomic‐Financial Risk in South American Countries," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(6), pages 854-890, August.
    12. Pasquale Dolce & Vincenzo Esposito Vinzi & Natale Carlo Lauro, 2018. "Non-symmetrical composite-based path modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 759-784, September.
    13. Mayr, Kathrin & Teller, Christoph, 2023. "Customer deviance in retailing: Managers’ emotional support and employees’ affective wellbeing," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    14. Husson, François & Josse, Julie & Saporta, Gilbert, 2016. "Jan de Leeuw and the French School of Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i06).
    15. Evermann, Joerg & Tate, Mary, 2016. "Assessing the predictive performance of structural equation model estimators," Journal of Business Research, Elsevier, vol. 69(10), pages 4565-4582.
    16. Sarstedt, Marko & Hair, Joseph F. & Ringle, Christian M. & Thiele, Kai O. & Gudergan, Siegfried P., 2016. "Estimation issues with PLS and CBSEM: Where the bias lies!," Journal of Business Research, Elsevier, vol. 69(10), pages 3998-4010.
    17. Michel Tenenhaus & Arthur Tenenhaus & Patrick J. F. Groenen, 2017. "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 737-777, September.
    18. Rosaria Romano & Francesco Palumbo, 2021. "Partial possibilistic regression path modeling: handling uncertainty in path modeling," Computational Statistics, Springer, vol. 36(1), pages 615-639, March.
    19. Florian Rohart & Benoît Gautier & Amrit Singh & Kim-Anh Lê Cao, 2017. "mixOmics: An R package for ‘omics feature selection and multiple data integration," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-19, November.
    20. Shen, Cencheng & Sun, Ming & Tang, Minh & Priebe, Carey E., 2014. "Generalized canonical correlation analysis for classification," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 310-322.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:natres:v:47:y:2023:i:4:p:672-698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1477-8947 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.