Credit scoring prediction leveraging interpretable ensemble learning
Author
Abstract
Suggested Citation
DOI: 10.1002/for.3033
Download full text from publisher
References listed on IDEAS
- Raffaella Calabrese & Paolo Giudici, 2015. "Estimating bank default with generalised extreme value regression models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(11), pages 1783-1792, November.
- Yu, Baojun & Li, Changming & Mirza, Nawazish & Umar, Muhammad, 2022. "Forecasting credit ratings of decarbonized firms: Comparative assessment of machine learning models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022.
"Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,"
European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
- Elena Ivona Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2022. "Machine Learning for Credit Scoring: Improving Logistic Regression with Non Linear Decision Tree Effects," Post-Print hal-03331114, HAL.
- Yiheng Li & Weidong Chen, 2020. "A Comparative Performance Assessment of Ensemble Learning for Credit Scoring," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
- Michael Bücker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2022. "Transparency, auditability, and explainability of machine learning models in credit scoring," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 70-90, January.
- Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
- Yang, Fan & Abedin, Mohammad Zoynul & Hajek, Petr, 2024. "An explainable federated learning and blockchain-based secure credit modeling method," European Journal of Operational Research, Elsevier, vol. 317(2), pages 449-467.
- Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2023. "Explainable FinTech lending," Journal of Economics and Business, Elsevier, vol. 125.
- Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
- Gero Szepannek, 2022. "An Overview on the Landscape of R Packages for Open Source Scorecard Modelling," Risks, MDPI, vol. 10(3), pages 1-33, March.
- Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
- Al-Amin Abba Dabo & Amin Hosseinian-Far, 2023. "An Integrated Methodology for Enhancing Reverse Logistics Flows and Networks in Industry 5.0," Logistics, MDPI, vol. 7(4), pages 1-26, December.
- Zhang, Lifeng & Chao, Xiangrui & Qian, Qian & Jing, Fuying, 2022. "Credit evaluation solutions for social groups with poor services in financial inclusion: A technical forecasting method," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
- Silvia Facchinetti & Paolo Giudici & Silvia Angela Osmetti, 2020. "Cyber risk measurement with ordinal data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 173-185, March.
- Wang, Xiang & Yin, Jian & Yang, Yao & Muda, Iskandar & Abduvaxitovna, Shamansurova Zilola & AlWadi, Belal Mahmoud & Castillo-Picon, Jorge & Abdul-Samad, Zulkiflee, 2023. "Relationship between the resource curse, Forest management and sustainable development and the importance of R&D Projects," Resources Policy, Elsevier, vol. 85(PA).
- Li, Shanshan & Long, Fang & Long, Litao, 2022. "Resources curse and sustainable development revisited: Evaluating the role of remittances for China," Resources Policy, Elsevier, vol. 79(C).
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- John Martin & Sona Taheri & Mali Abdollahian, 2024. "Optimizing Ensemble Learning to Reduce Misclassification Costs in Credit Risk Scorecards," Mathematics, MDPI, vol. 12(6), pages 1-15, March.
- Anton Gerunov, 2023. "Modern Approaches To Forecasting Firm Default Rates Over The Short To Medium Term: An Application To A Panel Of Polish Companies," Yearbook of the Faculty of Economics and Business Administration, Sofia University, Faculty of Economics and Business Administration, Sofia University St Kliment Ohridski - Bulgaria, vol. 22(1), pages 5-15, October.
- Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
- Zhang, Mingming & Wong, Wing-Keung & Kim Oanh, Thai Thi & Muda, Iskandar & Islam, Saiful & Hishan, Sanil S. & Abduvaxitovna, Shamansurova Zilola, 2023. "Regulating environmental pollution through natural resources and technology innovation: Revisiting the environment Kuznet curve in China through quantile-based ARDL estimations," Resources Policy, Elsevier, vol. 85(PA).
- Paolo Giudici & Gloria Polinesi, 2021. "Crypto price discovery through correlation networks," Annals of Operations Research, Springer, vol. 299(1), pages 443-457, April.
- Li, Zhe & Liang, Shuguang & Pan, Xianyou & Pang, Meng, 2024. "Credit risk prediction based on loan profit: Evidence from Chinese SMEs," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:2:p:286-308. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.