IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v35y2024i8ne2890.html
   My bibliography  Save this article

Characterizing Asymptotic Dependence between a Satellite Precipitation Product and Station Data in the Northern US Rocky Mountains via the Tail Dependence Regression Framework With a Gibbs Posterior Inference Approach

Author

Listed:
  • Brook T. Russell
  • Yiren Ding
  • Whitney K. Huang
  • Jamie L. Dyer

Abstract

The use of satellite precipitation products (SPP) allows for precipitation information to be collected nearly globally, but questions remain regarding their ability to reproduce extreme precipitation over mountainous terrain. In this work, we assess the ability of the precipitation estimation from remotely sensed information using artificial neural networks‐climate data record (PERSIANN‐CDR) to capture daily precipitation extremes by comparing PERSIANN‐CDR with corresponding station data in the summer at remote locations in the northern US Rocky Mountains of Wyoming, Idaho, and Montana. The assessment utilizes the regular variation framework from extreme value theory and consists of two parts: (1) evaluating the extent to which PERSIANN‐CDR can capture precipitation extremes through inference on an asymptotic dependence parameter, concluding that the level of asymptotic dependence is moderate throughout the region; (2) developing a tail dependence regression modeling framework and a Gibbs posterior approach for inference to investigate the degree to which elevation and topographic heterogeneity impact the level of asymptotic dependence, finding that the inclusion of a set of meteorological covariates, when combined with the PERSIANN‐CDR output, yields an increased level of asymptotic dependence with station data.

Suggested Citation

  • Brook T. Russell & Yiren Ding & Whitney K. Huang & Jamie L. Dyer, 2024. "Characterizing Asymptotic Dependence between a Satellite Precipitation Product and Station Data in the Northern US Rocky Mountains via the Tail Dependence Regression Framework With a Gibbs Posterior I," Environmetrics, John Wiley & Sons, Ltd., vol. 35(8), December.
  • Handle: RePEc:wly:envmet:v:35:y:2024:i:8:n:e2890
    DOI: 10.1002/env.2890
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2890
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wilson Gyasi & Kahadawala Cooray, 2024. "New generalized extreme value distribution with applications to extreme temperature data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    2. P. G. Bissiri & C. C. Holmes & S. G. Walker, 2016. "A general framework for updating belief distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1103-1130, November.
    3. Martin Schlather, 2003. "A dependence measure for multivariate and spatial extreme values: Properties and inference," Biometrika, Biometrika Trust, vol. 90(1), pages 139-156, March.
    4. Fatima Palacios‐Rodriguez & Elena Di Bernardino & Melina Mailhot, 2023. "Smooth copula‐based generalized extreme value model and spatial interpolation for extreme rainfall in Central Eastern Canada," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    2. Crucinio, Francesca R. & De Bortoli, Valentin & Doucet, Arnaud & Johansen, Adam M., 2024. "Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    3. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    4. Malmendier, Ulrike & Pouzo, Demian & Vanasco, Victoria, 2020. "Investor experiences and international capital flows," Journal of International Economics, Elsevier, vol. 124(C).
    5. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    6. Sebastian Engelke & Stanislav Volgushev, 2022. "Structure learning for extremal tree models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2055-2087, November.
    7. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    8. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
    10. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    11. Andrew Gelman & Christian Hennig, 2017. "Beyond subjective and objective in statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 967-1033, October.
    12. Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
    13. Nicole H. Lewis & David B. Hitchcock & Ian L. Dryden & John R. Rose, 2018. "Peptide refinement by using a stochastic search," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1207-1236, November.
    14. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    15. Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Discussion Papers ISBA 2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Tomasz Strzalecki, 2024. "Variational Bayes and non-Bayesian Updating," Papers 2405.08796, arXiv.org, revised May 2024.
    17. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    18. Fabio Canova & Christian Matthes, 2021. "A Composite Likelihood Approach for Dynamic Structural Models," The Economic Journal, Royal Economic Society, vol. 131(638), pages 2447-2477.
    19. Bernaciak, Dawid & Griffin, Jim E., 2024. "A loss discounting framework for model averaging and selection in time series models," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1721-1733.
    20. Weerasinghe, Chaya & Loaiza-Maya, Rubén & Martin, Gael M. & Frazier, David T., 2025. "ABC-based forecasting in misspecified state space models," International Journal of Forecasting, Elsevier, vol. 41(1), pages 270-289.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:35:y:2024:i:8:n:e2890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.