IDEAS home Printed from https://ideas.repec.org/a/vrs/stintr/v22y2021i1p179-195n12.html
   My bibliography  Save this article

Bankruptcy prediction of small- and medium-sized enterprises in Poland based on the LDA and SVM methods

Author

Listed:
  • Ptak-Chmielewska Aneta

    (Warsaw School of Economics, Warsaw, ; Poland)

Abstract

The impact the last financial crisis had on the small- and medium-sized enterprises (SMEs) sector varied across countries, affecting them on different levels and to a different extent. The economic situation in Poland during and after the financial crisis was quite stable compared to other EU member states. SMEs represent one of the most important segments of the economy of every country. Therefore, it is crucial to develop a prediction model which easily adapts to the characteristics of SMEs.

Suggested Citation

  • Ptak-Chmielewska Aneta, 2021. "Bankruptcy prediction of small- and medium-sized enterprises in Poland based on the LDA and SVM methods," Statistics in Transition New Series, Statistics Poland, vol. 22(1), pages 179-195, March.
  • Handle: RePEc:vrs:stintr:v:22:y:2021:i:1:p:179-195:n:12
    DOI: 10.21307/stattrans-2021-010
    as

    Download full text from publisher

    File URL: https://doi.org/10.21307/stattrans-2021-010
    Download Restriction: no

    File URL: https://libkey.io/10.21307/stattrans-2021-010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Psillaki, Maria & Tsolas, Ioannis E. & Margaritis, Dimitris, 2010. "Evaluation of credit risk based on firm performance," European Journal of Operational Research, Elsevier, vol. 201(3), pages 873-881, March.
    2. Błażej Prusak, 2018. "Review of Research into Enterprise Bankruptcy Prediction in Selected Central and Eastern European Countries," IJFS, MDPI, vol. 6(3), pages 1-28, June.
    3. Andreeva, Galina & Calabrese, Raffaella & Osmetti, Silvia Angela, 2016. "A comparative analysis of the UK and Italian small businesses using Generalised Extreme Value models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 506-516.
    4. Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
    5. Tomasz Korol, 2010. "Multicriteria Early Warning System of Enterprises against the Bankruptcy Risk," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 4(4), December.
    6. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    7. Daniel Berg, 2007. "Bankruptcy prediction by generalized additive models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(2), pages 129-143, March.
    8. M. Modina & F. Pietrovito, 2014. "A default prediction model for Italian SMEs: the relevance of the capital structure," Applied Financial Economics, Taylor & Francis Journals, vol. 24(23), pages 1537-1554, December.
    9. du Jardin, Philippe, 2009. "Bankruptcy prediction models: How to choose the most relevant variables?," MPRA Paper 44380, University Library of Munich, Germany.
    10. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aneta Ptak-Chmielewska, 2021. "Bankruptcy prediction of small- and medium-sized enterprises in Poland based on the LDA and SVM methods," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 179-195, March.
    2. Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
    3. Aneta Ptak-Chmielewska, 2019. "Predicting Micro-Enterprise Failures Using Data Mining Techniques," JRFM, MDPI, vol. 12(1), pages 1-17, February.
    4. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    5. Christophe Schalck & Meryem Yankol-Schalck, 2021. "Predicting French SME failures: new evidence from machine learning techniques," Applied Economics, Taylor & Francis Journals, vol. 53(51), pages 5948-5963, November.
    6. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    7. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
    8. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    9. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    10. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    11. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    12. Michal Pavlicko & Jaroslav Mazanec, 2022. "Minimalistic Logit Model as an Effective Tool for Predicting the Risk of Financial Distress in the Visegrad Group," Mathematics, MDPI, vol. 10(8), pages 1-22, April.
    13. Veganzones, David & Séverin, Eric & Chlibi, Souhir, 2023. "Influence of earnings management on forecasting corporate failure," International Journal of Forecasting, Elsevier, vol. 39(1), pages 123-143.
    14. Theodore Metaxas & Athanasios Romanopoulos, 2023. "A Literature Review on the Financial Determinants of Hotel Default," JRFM, MDPI, vol. 16(7), pages 1-19, July.
    15. Rassoul Yazdipour & Richard Constand, 2010. "Predicting Firm Failure: A Behavioral Finance Perspective," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 14(3), pages 90-104, Fall.
    16. du Jardin, Philippe, 2021. "Forecasting corporate failure using ensemble of self-organizing neural networks," European Journal of Operational Research, Elsevier, vol. 288(3), pages 869-885.
    17. Petr Jakubík & Petr Teplý, 2011. "The JT Index as an Indicator of Financial Stability of Corporate Sector," Prague Economic Papers, Prague University of Economics and Business, vol. 2011(2), pages 157-176.
    18. Candida Bussoli & Mariateresa Cuoccio & Claudio Giannotti, 2021. "Discriminant Analysis and Firms’ Bankruptcy: Evidence from European SMEs," International Journal of Business and Management, Canadian Center of Science and Education, vol. 14(12), pages 164-164, July.
    19. Concepción de la Fuente-Cabrero & Mónica de Castro-Pardo & Rosa Santero-Sánchez & Pilar Laguna-Sánchez, 2019. "The Role of Mutual Guarantee Institutions in the Financial Sustainability of New Family-Owned Small Businesses," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    20. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Bankruptcy prediction for private firms in developing economies: a scoping review and guidance for future research," Management Review Quarterly, Springer, vol. 72(4), pages 927-966, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:22:y:2021:i:1:p:179-195:n:12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.