IDEAS home Printed from https://ideas.repec.org/a/vrs/manmar/v19y2024i4p579-600n1001.html
   My bibliography  Save this article

Scenario based merger & acquisition forecasting

Author

Listed:
  • Khowaja Kainat

    (Humboldt-Universität zu Berlin, Berlin, Germany)

  • Saef Danial

    (Humboldt-Universität zu Berlin, Berlin, Germany)

  • Sizov Sergej

    (Thieme Group, Germany)

  • Härdle Wolfgang Karl

    (Humboldt-Universität zu Berlin, BRC Blockchain Research Center, Berlin; Sim Kee Boon Institute, Singapore Management University, Singapore; NUS, Center of Competitiveness, Singapore; National Chiao Tung University, Prague, Czech Republic)

Abstract

While there is no doubt that M&A activity in the corporate sector follows wave-like patterns, there is no uniquely accepted definition of such a “merger wave” in a time series context. Count-data time series models are often employed to measure M&A activity and merger waves are then defined as clusters of periods with an unusually high number of M&A deals retrospectively. However, the distribution of deals is usually not normal (Gaussian). More recently, different approaches that take into account the time-varying nature of M&A activity have been proposed, but still require the a-priori selection of parameters. We propose adapting the combination of the Local Parametric Approach and Multiplier Bootstrap to a count data setup in order to identify locally homogeneous intervals in the time series of M&A activity. This eliminates the need for manual parameter selection and allows for the generation of accurate forecasts without any manual input.

Suggested Citation

  • Khowaja Kainat & Saef Danial & Sizov Sergej & Härdle Wolfgang Karl, 2024. "Scenario based merger & acquisition forecasting," Management & Marketing, Sciendo, vol. 19(4), pages 579-600.
  • Handle: RePEc:vrs:manmar:v:19:y:2024:i:4:p:579-600:n:1001
    DOI: 10.2478/mmcks-2024-0026
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/mmcks-2024-0026
    Download Restriction: no

    File URL: https://libkey.io/10.2478/mmcks-2024-0026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giraitis, Liudas & Kapetanios, George & Price, Simon, 2013. "Adaptive forecasting in the presence of recent and ongoing structural change," Journal of Econometrics, Elsevier, vol. 177(2), pages 153-170.
    2. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    3. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    4. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    5. González-Rivera, Gloria & Sun, Yingying, 2017. "Density forecast evaluation in unstable environments," International Journal of Forecasting, Elsevier, vol. 33(2), pages 416-432.
    6. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    7. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    8. Wolfgang K. Härdle & Nikolaus Hautsch & Andrija Mihoci, 2015. "Local Adaptive Multiplicative Error Models for High‐Frequency Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 529-550, June.
    9. Harford, Jarrad, 2005. "What drives merger waves?," Journal of Financial Economics, Elsevier, vol. 77(3), pages 529-560, September.
    10. Kutoyants, Yury A. & Spokoiny, Vladimir, 1999. "Optimal choice of observation window for Poisson observations," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 291-298, September.
    11. Spokoiny, Vladimir G., 1998. "Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice," SFB 373 Discussion Papers 1998,1, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khowaja, Kainat & Saef, Danial & Sizov, Sergej & Härdle, Wolfgang Karl, 2020. "Data Analytics Driven Controlling: bridging statistical modeling and managerial intuition," IRTG 1792 Discussion Papers 2020-026, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    4. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    5. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    6. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
    7. Xu, Xiu & Mihoci, Andrija & Härdle, Wolfgang Karl, 2018. "lCARE - localizing conditional autoregressive expectiles," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 198-220.
    8. Mariia Artemova & Francisco Blasques & Siem Jan Koopman & Zhaokun Zhang, 2021. "Forecasting in a changing world: from the great recession to the COVID-19 pandemic," Tinbergen Institute Discussion Papers 21-006/III, Tinbergen Institute.
    9. Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2022. "Smooth Robust Multi-Horizon Forecasts," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 143-165, Emerald Group Publishing Limited.
    10. Hirano, Keisuke & Wright, Jonathan H., 2022. "Analyzing cross-validation for forecasting with structural instability," Journal of Econometrics, Elsevier, vol. 226(1), pages 139-154.
    11. Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
    12. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    13. Zhang, Xingmin & Zhang, Shuai, 2021. "Optimal time-varying tail risk network with a rolling window approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    14. repec:hum:wpaper:sfb649dp2015-052 is not listed on IDEAS
    15. Luca Nocciola, 2022. "Finite Sample Forecast Properties and Window Length Under Breaks in Cointegrated Systems," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 167-196, Emerald Group Publishing Limited.
    16. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    17. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    18. Andre Jungmittag, 2016. "Combination of Forecasts across Estimation Windows: An Application to Air Travel Demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(4), pages 373-380, July.
    19. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    20. Gao, Jiti & Gijbels, Irene & Van Bellegem, Sebastien, 2008. "Nonparametric simultaneous testing for structural breaks," Journal of Econometrics, Elsevier, vol. 143(1), pages 123-142, March.
    21. Gaies, Brahim & Nakhli, Mohamed Sahbi & Sahut, Jean-Michel & Schweizer, Denis, 2023. "Interactions between investors’ fear and greed sentiment and Bitcoin prices," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:manmar:v:19:y:2024:i:4:p:579-600:n:1001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.