IDEAS home Printed from https://ideas.repec.org/a/vrs/bjeust/v9y2019i3p148-165n9.html
   My bibliography  Save this article

The Annexation of Crimea: A Realist Look from the Energy Resources Perspective

Author

Listed:
  • Keypour Javad

    (TalTech Law School, Tallinn University of Technology Akadeemia tee 3, Tallinn 12618, Estonia)

  • Hendla Ivar

    (University of Tampere Kalevantie 4, Tampere33100, Finland)

Abstract

The article studies the role of energy resources in the annexation of Crimea by the Russian government. Russian justification that this action was taken to protect Russian ethnicity, as declared with the “referendum”, can be challenged in the light of the realist balance of power concept. According to the research, Russia considered Ukraine’s improving relations with the West as a threat and tried to eliminate it with preemptive action, in order to reestablish regional balance of power with the West. The article finds that the energy factor had a significant role in this consideration but in a subtractive approach. More precisely, there were no major incentives for Russia to capture the Black Sea resources intrinsically, but these reserves were recognized as part of the main Ukrainian economic empowerment plan, particularly on the EU’s future energy market. Thus, Russia tried to block Ukraine’s access to them in line with a wedge strategy. Hence, the annexation can be considered as one part of Russian energy policy towards the EU and Russia’s goal to emasculate Ukraine’s natural gas transit role by constructing new pipelines such as Nord Stream and Turkish Stream, as the other part.

Suggested Citation

  • Keypour Javad & Hendla Ivar, 2019. "The Annexation of Crimea: A Realist Look from the Energy Resources Perspective," TalTech Journal of European Studies, Sciendo, vol. 9(3), pages 148-165, September.
  • Handle: RePEc:vrs:bjeust:v:9:y:2019:i:3:p:148-165:n:9
    DOI: 10.1515/bjes-2019-0027
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/bjes-2019-0027
    Download Restriction: no

    File URL: https://libkey.io/10.1515/bjes-2019-0027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weijermars, Ruud, 2013. "Economic appraisal of shale gas plays in Continental Europe," Applied Energy, Elsevier, vol. 106(C), pages 100-115.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao‐Zhong Yang & Liang‐Ping Yi & Xiao‐Gang Li & Yu Li & Min Jia, 2018. "Phase control of downhole fluid during supercritical carbon dioxide fracturing," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1079-1089, December.
    2. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    3. Daniel J. G. Crow & Kris Anderson & Adam D. Hawkes & Nigel Brandon, 2018. "Impact of Drilling Costs on the US Gas Industry: Prospects for Automation," Energies, MDPI, vol. 11(9), pages 1-13, August.
    4. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    5. Andres Soage & Ruben Juanes & Ignasi Colominas & Luis Cueto-Felgueroso, 2024. "Optimization of Financial Indicators in Shale-Gas Wells Combining Numerical Decline Curve Analysis and Economic Data Analysis," Energies, MDPI, vol. 17(4), pages 1-25, February.
    6. De Silva, P.N.K. & Simons, S.J.R. & Stevens, P., 2016. "Economic impact analysis of natural gas development and the policy implications," Energy Policy, Elsevier, vol. 88(C), pages 639-651.
    7. Kim, Tae Hong & Cho, Jinhyung & Lee, Kun Sang, 2017. "Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects," Applied Energy, Elsevier, vol. 190(C), pages 1195-1206.
    8. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    9. Mihail Nikolaevich Dudin & Nikolaj Vasilevich Lyasnikov & Vladimir Dmitriyevich Sekerin & Anna Evgenevna Gorohova & Vyacheslav Viktorovich Burlakov, 2016. "Provision of Energy Security at the National Level in the Context of the Global Gas Transportation Industry Development," International Journal of Energy Economics and Policy, Econjournals, vol. 6(2), pages 234-242.
    10. Saussay, Aurélien, 2018. "Can the US shale revolution be duplicated in continental Europe? An economic analysis of European shale gas resources," Energy Economics, Elsevier, vol. 69(C), pages 295-306.
    11. Gong, Jianming & Qiu, Zhen & Zou, Caineng & Wang, Hongyan & Shi, Zhensheng, 2020. "An integrated assessment system for shale gas resources associated with graptolites and its application," Applied Energy, Elsevier, vol. 262(C).
    12. Calderón, Andrés J. & Guerra, Omar J. & Papageorgiou, Lazaros G. & Reklaitis, Gintaras V., 2018. "Disclosing water-energy-economics nexus in shale gas development," Applied Energy, Elsevier, vol. 225(C), pages 710-731.
    13. Cooper, Jasmin & Stamford, Laurence & Azapagic, Adisa, 2018. "Economic viability of UK shale gas and potential impacts on the energy market up to 2030," Applied Energy, Elsevier, vol. 215(C), pages 577-590.
    14. Vitor Miguel Ribeiro & Gustavo Soutinho & Isabel Soares, 2023. "Natural Gas Prices in the Framework of European Union’s Energy Transition: Assessing Evolution and Drivers," Energies, MDPI, vol. 16(4), pages 1-46, February.
    15. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    16. repec:hal:spmain:info:hdl:2441/3vsrea3gla9r5oaa2cle5jrqfh is not listed on IDEAS
    17. Lee, Jui-Yuan & Tan, Raymond R. & Chen, Cheng-Liang, 2014. "A unified model for the deployment of carbon capture and storage," Applied Energy, Elsevier, vol. 121(C), pages 140-148.
    18. Yuan, Jiehui & Luo, Dongkun & Xia, Liangyu & Feng, Lianyong, 2015. "Policy recommendations to promote shale gas development in China based on a technical and economic evaluation," Energy Policy, Elsevier, vol. 85(C), pages 194-206.
    19. Chi Kong Chyong and David M. Reiner, 2015. "Economics and Politics of Shale Gas in Europe," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    20. Weijermars, Ruud, 2014. "US shale gas production outlook based on well roll-out rate scenarios," Applied Energy, Elsevier, vol. 124(C), pages 283-297.
    21. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:bjeust:v:9:y:2019:i:3:p:148-165:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.