IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v215y2018icp577-590.html
   My bibliography  Save this article

Economic viability of UK shale gas and potential impacts on the energy market up to 2030

Author

Listed:
  • Cooper, Jasmin
  • Stamford, Laurence
  • Azapagic, Adisa

Abstract

The UK is in the early stages of developing a shale gas industry and to date six test wells have been drilled but none yet exploited commercially. Some argue that shale gas could reduce energy prices and improve national energy security. However, the costs of bringing commercial-size wells into operation are uncertain and the impact shale gas could have on the UK energy market is currently unknown. Therefore, this paper evaluates the economic viability of developing a UK shale gas industry and the impacts it could have on the UK gas and electricity markets and consumer energy bills up to 2030. The estimated life cycle (levelised) costs of shale gas production range from 0.47 to 56.74 pence/MJ (0.61–73 US$ cents/MJ), with an average value of 4.64 pence/MJ. The break-even price at which shale gas can be sold varies between 0.95 and 114.44 pence/MJ, averaging at 9.47 pence/MJ, depending on the volume of gas produced by a shale gas well. The latter is two times higher than imported liquefied natural gas, around 30% more expensive than UK natural gas and three times greater than the price of US shale gas. Electricity from shale gas is on average 17% more expensive than from domestic conventional gas but still more competitive than most other electricity options, including coal and renewables. However, the impact of shale gas on the energy market would be limited across the expected range of shale gas penetration into the gas and electricity mixes, suggesting that it would have little effect on energy prices. This is reflected in an almost negligible impact on consumer energy bills. The potential of shale gas to boost the UK economy is also limited, contributing 0.017–0.033% to the GDP. This is an order of magnitude lower than the contribution of US shale gas to its GDP (0.2%), indicating that the economic success of shale gas in the US may not be replicated in the UK. These findings will be of interest to shale gas developers and policy makers not only in the UK but in other countries considering exploitation of shale gas resources.

Suggested Citation

  • Cooper, Jasmin & Stamford, Laurence & Azapagic, Adisa, 2018. "Economic viability of UK shale gas and potential impacts on the energy market up to 2030," Applied Energy, Elsevier, vol. 215(C), pages 577-590.
  • Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:577-590
    DOI: 10.1016/j.apenergy.2018.02.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weijermars, Ruud, 2013. "Economic appraisal of shale gas plays in Continental Europe," Applied Energy, Elsevier, vol. 106(C), pages 100-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evans, Neil & Jones, Calvin & Munday, Max & Song, Meng, 2019. "Economic effects in the UK periphery from unconventional gas development: Evidence from Wales," Energy, Elsevier, vol. 166(C), pages 1037-1046.
    2. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    3. Xi Yang & Alun Gu & Fujie Jiang & Wenli Xie & Qi Wu, 2020. "Integrated Assessment Modeling of China’s Shale Gas Resource: Energy System Optimization, Environmental Cobenefits, and Methane Risk," Energies, MDPI, vol. 14(1), pages 1-24, December.
    4. Acquah-Andoh, Elijah & Ike, Onyekachi & Ifelebuegu, Augustine O. & Owusu, Andrews, 2020. "The fiscal regime for UK shale gas: Analysing the impacts of pad allowance on shale gas investments," Energy Policy, Elsevier, vol. 146(C).
    5. Gong, Jianming & Qiu, Zhen & Zou, Caineng & Wang, Hongyan & Shi, Zhensheng, 2020. "An integrated assessment system for shale gas resources associated with graptolites and its application," Applied Energy, Elsevier, vol. 262(C).
    6. Wang, Qiang & Zhan, Lina, 2019. "Assessing the sustainability of the shale gas industry by combining DPSIRM model and RAGA-PP techniques: An empirical analysis of Sichuan and Chongqing, China," Energy, Elsevier, vol. 176(C), pages 353-364.
    7. Yang, Run & Liu, Xiangui & Yu, Rongze & Hu, Zhiming & Duan, Xianggang, 2022. "Long short-term memory suggests a model for predicting shale gas production," Applied Energy, Elsevier, vol. 322(C).
    8. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    9. Hong, Bingyuan & Li, Xiaoping & Song, Shangfei & Chen, Shilin & Zhao, Changlong & Gong, Jing, 2020. "Optimal planning and modular infrastructure dynamic allocation for shale gas production," Applied Energy, Elsevier, vol. 261(C).
    10. Muhammad Ahmed & Sina Rezaei-Gomari, 2018. "Economic Feasibility Analysis of Shale Gas Extraction from UK’s Carboniferous Bowland-Hodder Shale Unit," Resources, MDPI, vol. 8(1), pages 1-17, December.
    11. Liu, Haomin & Zhang, Zaixu & Zhang, Tao, 2022. "Shale gas investment decision-making: Green and efficient development under market, technology and environment uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    12. Eser, P. & Chokani, N. & Abhari, R., 2019. "Impact of Nord Stream 2 and LNG on gas trade and security of supply in the European gas network of 2030," Applied Energy, Elsevier, vol. 238(C), pages 816-830.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao‐Zhong Yang & Liang‐Ping Yi & Xiao‐Gang Li & Yu Li & Min Jia, 2018. "Phase control of downhole fluid during supercritical carbon dioxide fracturing," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1079-1089, December.
    2. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    3. Andres Soage & Ruben Juanes & Ignasi Colominas & Luis Cueto-Felgueroso, 2024. "Optimization of Financial Indicators in Shale-Gas Wells Combining Numerical Decline Curve Analysis and Economic Data Analysis," Energies, MDPI, vol. 17(4), pages 1-25, February.
    4. De Silva, P.N.K. & Simons, S.J.R. & Stevens, P., 2016. "Economic impact analysis of natural gas development and the policy implications," Energy Policy, Elsevier, vol. 88(C), pages 639-651.
    5. Saussay, Aurélien, 2018. "Can the US shale revolution be duplicated in continental Europe? An economic analysis of European shale gas resources," Energy Economics, Elsevier, vol. 69(C), pages 295-306.
    6. Gong, Jianming & Qiu, Zhen & Zou, Caineng & Wang, Hongyan & Shi, Zhensheng, 2020. "An integrated assessment system for shale gas resources associated with graptolites and its application," Applied Energy, Elsevier, vol. 262(C).
    7. Calderón, Andrés J. & Guerra, Omar J. & Papageorgiou, Lazaros G. & Reklaitis, Gintaras V., 2018. "Disclosing water-energy-economics nexus in shale gas development," Applied Energy, Elsevier, vol. 225(C), pages 710-731.
    8. Lee, Jui-Yuan & Tan, Raymond R. & Chen, Cheng-Liang, 2014. "A unified model for the deployment of carbon capture and storage," Applied Energy, Elsevier, vol. 121(C), pages 140-148.
    9. Yuan, Jiehui & Luo, Dongkun & Xia, Liangyu & Feng, Lianyong, 2015. "Policy recommendations to promote shale gas development in China based on a technical and economic evaluation," Energy Policy, Elsevier, vol. 85(C), pages 194-206.
    10. Chi Kong Chyong and David M. Reiner, 2015. "Economics and Politics of Shale Gas in Europe," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    11. Weijermars, Ruud, 2015. "Shale gas technology innovation rate impact on economic Base Case – Scenario model benchmarks," Applied Energy, Elsevier, vol. 139(C), pages 398-407.
    12. Zhong, Dong-Liang & Li, Zheng & Lu, Yi-Yu & Wang, Jia-Le & Yan, Jin, 2015. "Evaluation of CO2 removal from a CO2+CH4 gas mixture using gas hydrate formation in liquid water and THF solutions," Applied Energy, Elsevier, vol. 158(C), pages 133-141.
    13. Measham, Thomas & Fleming, David & Schandl, Heinz, 2015. "A Conceptual Model of the Socioeconomic Impacts of Unconventional Fossil Fuel Extraction," MPRA Paper 68523, University Library of Munich, Germany, revised 24 Nov 2015.
    14. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    15. Daniel J. G. Crow & Kris Anderson & Adam D. Hawkes & Nigel Brandon, 2018. "Impact of Drilling Costs on the US Gas Industry: Prospects for Automation," Energies, MDPI, vol. 11(9), pages 1-13, August.
    16. Kim, Tae Hong & Cho, Jinhyung & Lee, Kun Sang, 2017. "Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects," Applied Energy, Elsevier, vol. 190(C), pages 1195-1206.
    17. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    18. Mihail Nikolaevich Dudin & Nikolaj Vasilevich Lyasnikov & Vladimir Dmitriyevich Sekerin & Anna Evgenevna Gorohova & Vyacheslav Viktorovich Burlakov, 2016. "Provision of Energy Security at the National Level in the Context of the Global Gas Transportation Industry Development," International Journal of Energy Economics and Policy, Econjournals, vol. 6(2), pages 234-242.
    19. Vitor Miguel Ribeiro & Gustavo Soutinho & Isabel Soares, 2023. "Natural Gas Prices in the Framework of European Union’s Energy Transition: Assessing Evolution and Drivers," Energies, MDPI, vol. 16(4), pages 1-46, February.
    20. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:215:y:2018:i:c:p:577-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.