IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i1p265-285.html
   My bibliography  Save this article

A new robust dynamic Bayesian network approach for disruption risk assessment under the supply chain ripple effect

Author

Listed:
  • Ming Liu
  • Zhongzheng Liu
  • Feng Chu
  • Feifeng Zheng
  • Chengbin Chu

Abstract

Dynamic Bayesian network (DBN) theory provides a valid tool to estimate the risk of disruptions, propagating along the supply chain (SC), i.e. the ripple effect. However, in cases of data scarcity, obtaining perfect information on probability distributions required by the DBN is impractical. To overcome this difficulty, a new robust DBN approach is, for the first time, proposed in this study to analyse the worst-case oriented disruption propagation in the SC. This work considers an SC with multiple suppliers and one manufacturer over several time periods, in which only probability intervals of the suppliers' states and those of the related disruption propagations are known. The objective is to acquire the robust performance of risk estimation, measured by the worst-case probability in the disrupted state for the manufacturer. We first establish a nonlinear programming formulation to mathematically materialise the proposed robust DBN, which can be used to solve small-size problems. To overcome the computational difficulty in solving large-size problems, an efficient simulated annealing algorithm is further designed. Numerical experiments are conducted to validate its efficiency.

Suggested Citation

  • Ming Liu & Zhongzheng Liu & Feng Chu & Feifeng Zheng & Chengbin Chu, 2021. "A new robust dynamic Bayesian network approach for disruption risk assessment under the supply chain ripple effect," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 265-285, January.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:1:p:265-285
    DOI: 10.1080/00207543.2020.1841318
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1841318
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1841318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    2. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    3. Ming Liu & Hao Tang & Yunfeng Wang & Ruixi Li & Yi Liu & Xin Liu & Yaqian Wang & Yiyang Wu & Yu Wu & Zhijun Sun, 2023. "Enhancing Food Supply Chain in Green Logistics with Multi-Level Processing Strategy under Disruptions," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    4. Madhukar Chhimwal & Saurabh Agrawal & Girish Kumar, 2021. "Measuring Circular Supply Chain Risk: A Bayesian Network Methodology," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    5. Liu, Ming & Liu, Zhongzheng & Chu, Feng & Dolgui, Alexandre & Chu, Chengbin & Zheng, Feifeng, 2022. "An optimization approach for multi-echelon supply chain viability with disruption risk minimization," Omega, Elsevier, vol. 112(C).
    6. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:1:p:265-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.