IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i11p3284-3303.html
   My bibliography  Save this article

Ripple effect modelling of supplier disruption: integrated Markov chain and dynamic Bayesian network approach

Author

Listed:
  • Seyedmohsen Hosseini
  • Dmitry Ivanov
  • Alexandre Dolgui

Abstract

The ripple effect can occur when a supplier base disruption cannot be localised and consequently propagates downstream the supply chain (SC), adversely affecting performance. While stress-testing of SC designs and assessment of their vulnerability to disruptions in a single-echelon-single-event setting is desirable and indeed critical for some firms, modelling the ripple effect impact in multi-echelon-correlated-events systems is becoming increasingly important. Notably, ripple effect assessment in multi-stage SCs is particularly challenged by the need to consider both vulnerability and recoverability capabilities at individual firms in the network. We construct a new model based on integration of Discrete-Time Markov Chain (DTMC) and a Dynamic Bayesian Network (DBN) to quantify the ripple effect. We use the DTMC to model the recovery and vulnerability of suppliers. The proposed DTMC model is then equalised with a DBN model in order to simulate the propagation behaviour of supplier disruption in the SC. Finally, we propose a metric that quantifies the ripple effect of supplier disruption on manufacturers in terms of total expected utility and service level. This ripple effect metric is applied to two case studies and analysed. The findings suggest that our model can be of value in uncovering latent high-risk paths in the SC, analysing the performance impact of both a disruption and its propagation, and prioritising contingency and recovery policies.

Suggested Citation

  • Seyedmohsen Hosseini & Dmitry Ivanov & Alexandre Dolgui, 2020. "Ripple effect modelling of supplier disruption: integrated Markov chain and dynamic Bayesian network approach," International Journal of Production Research, Taylor & Francis Journals, vol. 58(11), pages 3284-3303, June.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:11:p:3284-3303
    DOI: 10.1080/00207543.2019.1661538
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1661538
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1661538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iftikhar, Ilaria Giannoccaro & Anas, 2023. "Mitigating ripple effect in supply networks: the effect of trust and topology on resilience," OSF Preprints 2spt3, Center for Open Science.
    2. Islam, Samiul & Amin, Saman Hassanzadeh & Wardley, Leslie J., 2021. "Machine learning and optimization models for supplier selection and order allocation planning," International Journal of Production Economics, Elsevier, vol. 242(C).
    3. Ehsan Najafnejhad & Mahdieh Tavassoli Roodsari & Somayeh Sepahrom & Mojtaba Jenabzadeh, 2021. "A mathematical inventory model for a single-vendor multi-retailer supply chain based on the Vendor Management Inventory Policy," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 579-586, June.
    4. Ualison Rébula Oliveira & Camila Oliveira Santos & Gabriel Elias Lunz Chaves & Vicente Aprigliano Fernandes, 2022. "Analysis of the MORT method applicability for risk management in supply chains," Operations Management Research, Springer, vol. 15(3), pages 1361-1382, December.
    5. Belhadi, Amine & Kamble, Sachin & Jabbour, Charbel Jose Chiappetta & Gunasekaran, Angappa & Ndubisi, Nelson Oly & Venkatesh, Mani, 2021. "Manufacturing and service supply chain resilience to the COVID-19 outbreak: Lessons learned from the automobile and airline industries," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    6. Gerda Žigienė & Egidijus Rybakovas & Rimgailė Vaitkienė & Vaidas Gaidelys, 2022. "Setting the Grounds for the Transition from Business Analytics to Artificial Intelligence in Solving Supply Chain Risk," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    7. Zhu, Xiaoyan & Cao, Yunzhi, 2021. "The optimal recovery-fund based strategy for uncertain supply chain disruptions: A risk-averse two-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    8. Madhukar Chhimwal & Saurabh Agrawal & Girish Kumar, 2021. "Measuring Circular Supply Chain Risk: A Bayesian Network Methodology," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    9. Lai, Xinfeng & Chen, Zhixiang & Wang, Xin & Chiu, Chun-Hung, 2023. "Risk propagation and mitigation mechanisms of disruption and trade risks for a global production network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    10. Zhou, Jianheng & Luo, Yao, 2023. "Bayes information updating and multiperiod supply chain screening," International Journal of Production Economics, Elsevier, vol. 256(C).
    11. Abroon Qazi & Mecit Can Emre Simsekler & Steven Formaneck, 2023. "Supply chain risk network value at risk assessment using Bayesian belief networks and Monte Carlo simulation," Annals of Operations Research, Springer, vol. 322(1), pages 241-272, March.
    12. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    13. Manupati, V.K. & Schoenherr, Tobias & Ramkumar, M. & Panigrahi, Suraj & Sharma, Yash & Mishra, Prakriti, 2022. "Recovery strategies for a disrupted supply chain network: Leveraging blockchain technology in pre- and post-disruption scenarios," International Journal of Production Economics, Elsevier, vol. 245(C).
    14. Chih-Hung Hsu & Xu He & Ting-Yi Zhang & An-Yuan Chang & Wan-Ling Liu & Zhi-Qiang Lin, 2022. "Enhancing Supply Chain Agility with Industry 4.0 Enablers to Mitigate Ripple Effects Based on Integrated QFD-MCDM: An Empirical Study of New Energy Materials Manufacturers," Mathematics, MDPI, vol. 10(10), pages 1-35, May.
    15. Sardesai, Saskia & Klingebiel, Katja, 2023. "Maintaining viability by rapid supply chain adaptation using a process capability index," Omega, Elsevier, vol. 115(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:11:p:3284-3303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.