IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v9y2025i2p51-d1629952.html
   My bibliography  Save this article

Dynamical System Modeling for Disruption in Supply Chain and Its Detection Using a Data-Driven Deep Learning-Based Architecture

Author

Listed:
  • Víctor Hugo de la Cruz Madrigal

    (Doctorate Program in Advanced Engineering Sciences, Department of Electrical Engineering and Computer Science, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, Mexico)

  • Liliana Avelar Sosa

    (Department of Industrial Engineering and Manufacturing, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, Mexico)

  • Jose-Manuel Mejía-Muñoz

    (Doctorate Program in Advanced Engineering Sciences, Department of Electrical Engineering and Computer Science, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, Mexico)

  • Jorge Luis García Alcaraz

    (Department of Industrial Engineering and Manufacturing, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, Mexico)

  • Emilio Jiménez Macías

    (Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain)

Abstract

Background: The COVID-19 was a determining factor in the disruption of supply chains in the automotive industry, exacerbating material shortages. This led to increased supplier order cancelations, longer lead times, and reduced safety inventory levels. Methods: This study analyzes and models supply chain disruptions using system dynamics as a key tool, focusing on the disruptions caused by delays in scheduled orders and their impact on service levels within automotive supply chains in Mexico. This approach allowed us to capture the dynamic relationships and cascading effects associated with inventory shrinkage at Tier 2 suppliers, highlighting how these delays affect the chain’s overall performance. In addition to modeling using system dynamics, a deep-learning-based network was proposed to detect disruptions using the data generated by the dynamic model. The network architecture integrates convolutional layers for feature extraction and dense layers for classification, thereby enhancing its ability to identify disruption-related patterns. Results: The performance of the proposed model was evaluated using the AUC metric and compared with alternative methods. The proposed network achieved an AUC of 0.87, outperforming the multilayer perceptron model (AUC = 0.76) and a Neyman–Pearson-based model (AUC = 0.63). These results confirm the superior discriminatory ability of our approach, demonstrating higher accuracy and reliability in detecting disruptions. Furthermore, the dynamical models reveal that the domino effect increases delays in order reception due to the reduction in raw material inventories at Tier 2 suppliers. Conclusions: This paper effectively evaluates the impact of disruptions by demonstrating how reduced service levels propagate through the supply chain.

Suggested Citation

  • Víctor Hugo de la Cruz Madrigal & Liliana Avelar Sosa & Jose-Manuel Mejía-Muñoz & Jorge Luis García Alcaraz & Emilio Jiménez Macías, 2025. "Dynamical System Modeling for Disruption in Supply Chain and Its Detection Using a Data-Driven Deep Learning-Based Architecture," Logistics, MDPI, vol. 9(2), pages 1-23, April.
  • Handle: RePEc:gam:jlogis:v:9:y:2025:i:2:p:51-:d:1629952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/9/2/51/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/9/2/51/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ehsan Badakhshan & Paul Humphreys & Liam Maguire & Ronan McIvor, 2020. "Using simulation-based system dynamics and genetic algorithms to reduce the cash flow bullwhip in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5253-5279, September.
    2. Dmitry Ivanov & Alexandre Dolgui, 2019. "Low-Certainty-Need (LCN) supply chains: a new perspective in managing disruption risks and resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 5119-5136, August.
    3. Alexandre Dolgui & Dmitry Ivanov, 2021. "Ripple effect and supply chain disruption management: new trends and research directions," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 102-109, January.
    4. Wilson, Martha C., 2007. "The impact of transportation disruptions on supply chain performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 295-320, July.
    5. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    6. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    7. Matsuo, Hirofumi, 2015. "Implications of the Tohoku earthquake for Toyota׳s coordination mechanism: Supply chain disruption of automotive semiconductors," International Journal of Production Economics, Elsevier, vol. 161(C), pages 217-227.
    8. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2018. "Ripple effect in the supply chain: an analysis and recent literature," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 414-430, January.
    9. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov, 2018. "Scheduling of recovery actions in the supply chain with resilience analysis considerations," International Journal of Production Research, Taylor & Francis Journals, vol. 56(19), pages 6473-6490, October.
    10. Sergey A. Lochan & Tatiana P. Rozanova & Valery V. Bezpalov & Dmitry V. Fedyunin, 2021. "Supply Chain Management and Risk Management in an Environment of Stochastic Uncertainty (Retail)," Risks, MDPI, vol. 9(11), pages 1-14, November.
    11. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    12. Seyedmohsen Hosseini & Dmitry Ivanov & Alexandre Dolgui, 2020. "Ripple effect modelling of supplier disruption: integrated Markov chain and dynamic Bayesian network approach," International Journal of Production Research, Taylor & Francis Journals, vol. 58(11), pages 3284-3303, June.
    13. Bueno-Solano, Alfredo & Cedillo-Campos, Miguel Gastón, 2014. "Dynamic impact on global supply chains performance of disruptions propagation produced by terrorist acts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 1-12.
    14. Bradley, James R., 2014. "An improved method for managing catastrophic supply chain disruptions," Business Horizons, Elsevier, vol. 57(4), pages 483-495.
    15. Benjamin Korder & Julien Maheut & Matthias Konle, 2024. "Simulation Methods and Digital Strategies for Supply Chains Facing Disruptions: Insights from a Systematic Literature Review," Sustainability, MDPI, vol. 16(14), pages 1-31, July.
    16. Dmitry Ivanov & Boris Sokolov & Inna Solovyeva & Alexandre Dolgui & Ferry Jie, 2016. "Dynamic recovery policies for time-critical supply chains under conditions of ripple effect," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7245-7258, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Xinfeng & Chen, Zhixiang & Wang, Xin & Chiu, Chun-Hung, 2023. "Risk propagation and mitigation mechanisms of disruption and trade risks for a global production network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    2. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    3. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    4. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    5. Jie Lu & Feng Li & Desheng Wu, 2024. "A Two-Stage Sustainable Supplier Selection Model Considering Disruption Risk," Sustainability, MDPI, vol. 16(9), pages 1-20, May.
    6. Chih-Hung Hsu & Xu He & Ting-Yi Zhang & An-Yuan Chang & Wan-Ling Liu & Zhi-Qiang Lin, 2022. "Enhancing Supply Chain Agility with Industry 4.0 Enablers to Mitigate Ripple Effects Based on Integrated QFD-MCDM: An Empirical Study of New Energy Materials Manufacturers," Mathematics, MDPI, vol. 10(10), pages 1-35, May.
    7. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    8. Alam, Md Fahim Bin & Tushar, Saifur Rahman & Ahmed, Tazim & Karmaker, Chitra Lekha & Bari, A.B.M. Mainul & de Jesus Pacheco, Diego Augusto & Nayyar, Anand & Islam, Abu Reza Md Towfiqul, 2024. "Analysis of the enablers to deal with the ripple effect in food grain supply chains under disruption: Implications for food security and sustainability," International Journal of Production Economics, Elsevier, vol. 270(C).
    9. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    10. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    11. Ivanov, Dmitry, 2023. "Intelligent digital twin (iDT) for supply chain stress-testing, resilience, and viability," International Journal of Production Economics, Elsevier, vol. 263(C).
    12. Can Ding & Li Liu & Yi Zheng & Jianxiu Liao & Wenxing Huang, 2022. "Role of Distribution Centers Disruptions in New Retail Supply Chain: An Analysis Experiment," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    13. Liu, Ming & Ding, Yueyu & Chu, Feng & Dolgui, Alexandre & Zheng, Feifeng, 2024. "Robust actions for improving supply chain resilience and viability," Omega, Elsevier, vol. 123(C).
    14. Vimal K.E.K & Simon Peter Nadeem & Mahadharsan Ravichandran & Manavalan Ethirajan & Jayakrishna Kandasamy, 2022. "Resilience strategies to recover from the cascading ripple effect in a copper supply chain through project management," Operations Management Research, Springer, vol. 15(1), pages 440-460, June.
    15. Zhang, Xu & Naeem, Muhammad Abubakr & Du, Yuting & Rauf, Abdul, 2024. "Examining the bidirectional ripple effects in the NFT markets: Risky center or hedging center?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    16. Li, Yuhong & Zobel, Christopher W. & Seref, Onur & Chatfield, Dean, 2020. "Network characteristics and supply chain resilience under conditions of risk propagation," International Journal of Production Economics, Elsevier, vol. 223(C).
    17. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    18. A. V. Thomas & Biswajit Mahanty, 2021. "Dynamic assessment of control system designs of information shared supply chain network experiencing supplier disruption," Operational Research, Springer, vol. 21(1), pages 425-451, March.
    19. Alexander Pavlov & Dmitry Ivanov & Frank Werner & Alexandre Dolgui & Boris Sokolov, 2022. "Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains," Annals of Operations Research, Springer, vol. 319(1), pages 609-631, December.
    20. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington, 2020. "Optimal supply chain resilience with consideration of failure propagation and repair logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:9:y:2025:i:2:p:51-:d:1629952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.