IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i12p3903-3919.html
   My bibliography  Save this article

Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system

Author

Listed:
  • Qiang Liu
  • Hao Zhang
  • Jiewu Leng
  • Xin Chen

Abstract

Under a mass individualisation paradigm, the individualised design of manufacturing systems is difficult as it involves adaptive integrating both new and legacy machines for the formation of part families with uncertainty. A systematic virtual model mirroring the real world of manufacturing system is essential to bridge the gap between its design and operation. This paper presents a digital twin-driven methodology for rapid individualised designing of the automated flow-shop manufacturing system. The digital twin merges physics-based system modelling and distributed semi-physical simulation to provide engineering solution analysis capabilities and generates an authoritative digital design of the system at pre-production phase. An effective feedbacking of collected decision-support information from the intelligent multi-objective optimisation of the dynamic execution is presented to boost the applicability of the digital twin vision in the designing of AFMS. Finally, a bi-level iterative coordination mechanism is proposed to achieve optimal design performance for required functions of AFMS. A case study is conducted to prove the feasibility and effectiveness of the proposed methodology.

Suggested Citation

  • Qiang Liu & Hao Zhang & Jiewu Leng & Xin Chen, 2019. "Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3903-3919, June.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3903-3919
    DOI: 10.1080/00207543.2018.1471243
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1471243
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1471243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    2. Jun-Qiang Wang & Yun-Lei Song & Peng-Hao Cui & Yang Li, 2023. "A data-driven method for performance analysis and improvement in production systems with quality inspection," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 455-469, February.
    3. Dinara Dikhanbayeva & Sabit Shaikholla & Zhanybek Suleiman & Ali Turkyilmaz, 2020. "Assessment of Industry 4.0 Maturity Models by Design Principles," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    4. Wang, Jiancheng & He, Shuping & Luan, Xiaoli & Liu, Fei, 2020. "Fuzzy fault detection of conic-type nonlinear systems within the finite frequency domain," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    5. Kyu Tae Park & Jinho Yang & Sang Do Noh, 2021. "VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 501-544, February.
    6. Fan Zhang & Wenyu Zhang & Xiwen Luo & Zhigang Zhang & Yueteng Lu & Ben Wang, 2022. "Developing an IoT-Enabled Cloud Management Platform for Agricultural Machinery Equipped with Automatic Navigation Systems," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
    7. Kamble, Sachin S & Gunasekaran, Angappa & Parekh, Harsh & Mani, Venkatesh & Belhadi, Amine & Sharma, Rohit, 2022. "Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    8. Leng, Jiewu & Ruan, Guolei & Jiang, Pingyu & Xu, Kailin & Liu, Qiang & Zhou, Xueliang & Liu, Chao, 2020. "Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3903-3919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.