IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i6p1839-1849.html
   My bibliography  Save this article

A quick switching sampling system by variables for controlling lot fraction nonconforming

Author

Listed:
  • Shih-Wen Liu
  • Chien-Wei Wu

Abstract

This article develops a new sampling scheme by variables inspection, namely a quick switching sampling (QSS) system based on the process yield index for lot determination when the quality characteristic is normally distributed with two specification limits. The QSS system can provide a flexible sampling procedure by switching decision policies, normal inspection and tightened inspection. The operating characteristic curve of the proposed QSS system is derived and required to pass through two designed points, acceptable quality level and limiting quality level for satisfying risks simultaneously suffered by the producer and the consumer. The proposed sampling system’s performance is investigated and a comparison with the conventional variables single sampling (VSS) plan is also examined. The results indicate that the proposed system outperforms the VSS plan by requiring a smaller sample size for inspection while retaining the same protection. For practical purposes, the plan parameters’ tables are provided on the basis of various selected quality requirements and risks. Finally, we demonstrate the proposed sampling system using an example taken from a silicone LED lens industry.

Suggested Citation

  • Shih-Wen Liu & Chien-Wei Wu, 2016. "A quick switching sampling system by variables for controlling lot fraction nonconforming," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1839-1849, March.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:6:p:1839-1849
    DOI: 10.1080/00207543.2015.1084062
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1084062
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1084062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Pearn & G. Lin & K. Wang, 2004. "Normal Approximation to the Distribution of the Estimated Yield Index S pk," Quality & Quantity: International Journal of Methodology, Springer, vol. 38(1), pages 95-111, February.
    2. Wu, Chien-Wei & Aslam, Muhammad & Jun, Chi-Hyuck, 2012. "Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk," European Journal of Operational Research, Elsevier, vol. 217(3), pages 560-566.
    3. Wu, Chien-Wei, 2012. "An efficient inspection scheme for variables based on Taguchi capability index," European Journal of Operational Research, Elsevier, vol. 223(1), pages 116-122.
    4. Chien-Wei Wu & Mou-Yuan Liao & James C. Chen, 2012. "An improved approach for constructing lower confidence bound on process yield," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 6(3), pages 369-390.
    5. Balamurali, S. & Jun, Chi-Hyuck, 2007. "Multiple dependent state sampling plans for lot acceptance based on measurement data," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1221-1230, August.
    6. S. Balamurali & Chi-Hyuck Jun, 2009. "Designing of a variables two-plan system by minimizing the average sample number," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1159-1172.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amy H. I. Lee & Chien-Wei Wu & Yen-Wen Chen, 2016. "A modified variables repetitive group sampling plan with the consideration of preceding lots information," Annals of Operations Research, Springer, vol. 238(1), pages 355-373, March.
    2. Chien-Wei Wu & Zih-Huei Wang, 2017. "Developing a variables multiple dependent state sampling plan with simultaneous consideration of process yield and quality loss," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2351-2364, April.
    3. Amy Lee & Chien-Wei Wu & Yen-Wen Chen, 2016. "A modified variables repetitive group sampling plan with the consideration of preceding lots information," Annals of Operations Research, Springer, vol. 238(1), pages 355-373, March.
    4. Wu, Chien-Wei, 2012. "An efficient inspection scheme for variables based on Taguchi capability index," European Journal of Operational Research, Elsevier, vol. 223(1), pages 116-122.
    5. Chien-Wei Wu & Ming-Hung Shu & Pei-An Wang & Bi-Min Hsu, 2021. "Variables skip-lot sampling plans on the basis of process capability index for products with a low fraction of defectives," Computational Statistics, Springer, vol. 36(2), pages 1391-1413, June.
    6. Fernández, Arturo J., 2017. "Economic lot sampling inspection from defect counts with minimum conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 258(2), pages 573-580.
    7. CHEN, Piao & YE, Zhi-Sheng, 2018. "A systematic look at the gamma process capability indices," European Journal of Operational Research, Elsevier, vol. 265(2), pages 589-597.
    8. Fernández, Arturo J., 2012. "Minimizing the area of a Pareto confidence region," European Journal of Operational Research, Elsevier, vol. 221(1), pages 205-212.
    9. Wu, Chien-Wei & Wang, Zih-Huei, 2024. "A cost-effective skip-lot sampling scheme using loss-based capability index for product acceptance determination," International Journal of Production Economics, Elsevier, vol. 273(C).
    10. Fernández, Arturo J. & Correa-Álvarez, Cristian D. & Pericchi, Luis R., 2020. "Balancing producer and consumer risks in optimal attribute testing: A unified Bayesian/Frequentist design," European Journal of Operational Research, Elsevier, vol. 286(2), pages 576-587.
    11. Chien-Wei Wu & Armin Darmawan & Nien-Yun Wu, 2024. "A double sampling plan for truncated life tests under two-parameter Lindley distribution," Annals of Operations Research, Springer, vol. 340(1), pages 619-641, September.
    12. Fernández, Arturo J. & Pérez-González, Carlos J. & Aslam, Muhammad & Jun, Chi-Hyuck, 2011. "Design of progressively censored group sampling plans for Weibull distributions: An optimization problem," European Journal of Operational Research, Elsevier, vol. 211(3), pages 525-532, June.
    13. Lepore, A. & Palumbo, B. & Castagliola, P., 2018. "A note on decision making method for product acceptance based on process capability indices Cpk and Cpmk," European Journal of Operational Research, Elsevier, vol. 267(1), pages 393-398.
    14. Nasrullah Khan & Talat Yasmin & Muhammad Aslam & Chi-Hyuck Jun, 2018. "On the performance of modified EWMA charts using resampling schemes," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(3), pages 29-43.
    15. Shih-Wen Liu & Chien-Wei Wu, 2024. "An efficient partial sampling inspection for lot sentencing based on process yield," Annals of Operations Research, Springer, vol. 340(1), pages 325-344, September.
    16. To-Cheng Wang & Chien-Wei Wu & Ming-Hung Shu, 2022. "A variables-type multiple-dependent-state sampling plan based on the lifetime performance index under a Weibull distribution," Annals of Operations Research, Springer, vol. 311(1), pages 381-399, April.
    17. Fernández, Arturo J., 2015. "Optimum attributes component test plans for k-out-of-n:F Weibull systems using prior information," European Journal of Operational Research, Elsevier, vol. 240(3), pages 688-696.
    18. Qin, Ruwen & Cudney, Elizabeth A. & Hamzic, Zlatan, 2015. "An optimal plan of zero-defect single-sampling by attributes for incoming inspections in assembly lines," European Journal of Operational Research, Elsevier, vol. 246(3), pages 907-915.
    19. Kuen-Suan Chen & Hsi-Tien Chen & Tsang-Chuan Chang, 2017. "The construction and application of Six Sigma quality indices," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2365-2384, April.
    20. Michele Scagliarini, 2022. "A sequential test and a sequential sampling plan based on the process capability index Cpmk," Computational Statistics, Springer, vol. 37(3), pages 1523-1550, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:6:p:1839-1849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.