Author
Listed:
- Sonja Peterson
- Matthias Weitzel
Abstract
Because of large economic and environmental asymmetries among world regions and the incentive to free ride, an international climate regime with broad participation is hard to reach. Most of the proposed regimes are based on an allocation of emissions rights that is perceived as fair. Yet, there are also arguments to focus more on the actual welfare implications of different regimes and to focus on a ‘fair’ distribution of resulting costs. In this article, the computable general equilibrium model DART is used to analyse the driving forces of welfare implications in different scenarios in line with the 2 °C target. These include two regimes that are often presumed to be ‘fair’, namely a harmonized international carbon tax and a cap and trade system based on the convergence of per capita emissions rights, and also an ‘equal loss’ scenario where welfare losses relative to a business-as-usual scenario are equal for all major world regions. The main finding is that indirect energy market effects are a major driver of welfare effects and that the ‘equal loss’ scenario would thus require large transfer payments to energy exporters to compensate for welfare losses from lower world energy demand and prices.Policy relevanceA successful future climate regime requires ‘fair’ burden sharing. Many proposed regimes start from ethical considerations to derive an allocation of emissions reduction requirements or emissions allowances within an international emissions trading scheme. Yet, countries also consider the expected economic costs of a regime that are also driven by other factors besides allowance allocation. Indeed, in simplified lab experiments, successful groups are characterized by sharing costs proportional to wealth. This article shows that the major drivers of welfare effects are reduced demand for fossil energy and reduced fossil fuel prices, which implies that (1) what is often presumed to be a fair allocation of emissions allowances within an international emissions trading scheme leads to a very uneven distribution of economic costs and (2) aiming for equal relative losses for all regions requires large compensation to fossil fuel exporters, as argued, for example, by the Organization of Petroleum Exporting Countries (OPEC).
Suggested Citation
Sonja Peterson & Matthias Weitzel, 2016.
"Reaching a climate agreement: compensating for energy market effects of climate policy,"
Climate Policy, Taylor & Francis Journals, vol. 16(8), pages 993-1010, November.
Handle:
RePEc:taf:tcpoxx:v:16:y:2016:i:8:p:993-1010
DOI: 10.1080/14693062.2015.1064346
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:16:y:2016:i:8:p:993-1010. See general information about how to correct material in RePEc.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/tcpo20 .
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.