IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v4y2004i3p256-265.html
   My bibliography  Save this article

Testing for persistence in stock returns with GARCH-stable shocks

Author

Listed:
  • Prasad Bidarkota
  • J Huston Mcculloch

Abstract

We investigate persistence in CRSP monthly excess stock returns, using a state space model with stable disturbances. The non-Gaussian state space model with volatility persistence is estimated by maximum likelihood, using the optimal filtering algorithm given by Sorenson and Alspach (1971 Automatica 7 465-79). The conditional distribution has a stable α of 1.89, and normality is strongly rejected even after accounting for GARCH. However, stock returns do not contain a significant mean-reverting component. The optimal predictor is the unconditional expectation of the series, which we estimate to be 9.8% per annum.

Suggested Citation

  • Prasad Bidarkota & J Huston Mcculloch, 2004. "Testing for persistence in stock returns with GARCH-stable shocks," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 256-265.
  • Handle: RePEc:taf:quantf:v:4:y:2004:i:3:p:256-265 DOI: 10.1088/1469-7688/4/3/002
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1088/1469-7688/4/3/002
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wong, Wing-Keung & Li, Chi-Kwong, 1999. "A note on convex stochastic dominance," Economics Letters, Elsevier, vol. 62(3), pages 293-300, March.
    2. Wing-Keung Wong & Meher Manzur & Boon-Kiat Chew, 2003. "How rewarding is technical analysis? Evidence from Singapore stock market," Applied Financial Economics, Taylor & Francis Journals, pages 543-551.
    3. Meher Manzur & Wing-Keung Wong & Inn-Chau Chee, 1999. "Measuring international competitiveness: experience from East Asia," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1383-1391.
    4. Wing-Keung Wong & Robert B. Miller & Keshab Shrestha, 2002. "Maximum Likelihood Estimation of ARMA Model with Error Processes for Replicated Observations," Departmental Working Papers wp0217, National University of Singapore, Department of Economics.
    5. Wing-Keung Wong & Meher Manzur & Boon-Kiat Chew, 2003. "How rewarding is technical analysis? Evidence from Singapore stock market," Applied Financial Economics, Taylor & Francis Journals, pages 543-551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khurshid Kiani, 2010. "Predictable Signals in Excess Returns: Evidence from Non-Gaussian State Space Models," Economics Bulletin, AccessEcon, vol. 30(2), pages 1217-1232.
    2. José Curto & José Pinto & Gonçalo Tavares, 2009. "Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions," Statistical Papers, Springer, vol. 50(2), pages 311-321, March.
    3. Khurshid M. Kiani, 2016. "On Modelling and Forecasting Predictable Components in European Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 487-502, October.
    4. KIANI, Khurshid M., 2007. "Determination Of Volatility And Mean Returns: An Evidence From An Emerging Stock Market," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 4(1), pages 103-118.
    5. J. Huston McCulloch & Prasad V. Bidarkota, 2003. "Signal Extraction can Generate Volatility Clusters," Computing in Economics and Finance 2003 59, Society for Computational Economics.
    6. J. Huston McCulloch & Prasad V. Bidarkota, 2002. "Signal Extraction Can Generate Volatility Clusters From IID Shocks," Working Papers 02-04, Ohio State University, Department of Economics.
    7. Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
    8. Hill, Jonathan B., 2010. "On Tail Index Estimation For Dependent, Heterogeneous Data," Econometric Theory, Cambridge University Press, vol. 26(05), pages 1398-1436, October.
    9. Khurshid M. Kiani, 2006. "Predictability in Stock Returns in an Emerging Market: Evidence from KSE 100 Stock Price Index," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 45(3), pages 369-381.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:4:y:2004:i:3:p:256-265. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.