IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v44y2017i8p956-966.html
   My bibliography  Save this article

Norwegian port connectivity and its policy implications

Author

Listed:
  • Haiying Jia
  • Ove Daae Lampe
  • Veronika Solteszova
  • Siri P. Strandenes

Abstract

The importance of a seaport depends on how well it is connected in a transportation network. A port’s connectivity is therefore one of the key issues in determining its competitiveness and developments in regions and countries. We construct a port connectivity index for major Norwegian ports based on a unique dataset derived from the automated identification system (AIS) for multiple vessel types over a 7-year period. Port connectivity is evaluated empirically by the number of unique vessel visits, vessel sizes, and cargo sizes. The research has implications for port authorities and policy makers in the areas of port planning, infrastructure investment, short sea shipping promotion, and environmental policies. The contributions of this research are twofold. First, the methodology linking the AIS vessel-tracking system with port connectivity is a pioneering empirical application of maritime big data. Second, the port connectivity index is constructed for multiple vessel types and regional port groups, which is an improvement from the current literature where conceptual measures are constructed based on hypothetical and usually too simple optimization rules. The methodology can be easily expanded to other regions in the world.

Suggested Citation

  • Haiying Jia & Ove Daae Lampe & Veronika Solteszova & Siri P. Strandenes, 2017. "Norwegian port connectivity and its policy implications," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(8), pages 956-966, November.
  • Handle: RePEc:taf:marpmg:v:44:y:2017:i:8:p:956-966
    DOI: 10.1080/03088839.2017.1366080
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088839.2017.1366080
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088839.2017.1366080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roar Adland & Haiying Jia & Siri P. Strandenes, 2017. "Are AIS-based trade volume estimates reliable? The case of crude oil exports," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(5), pages 657-665, July.
    2. Valerie Brett & Michael Roe, 2010. "The potential for the clustering of the maritime transport sector in the Greater Dublin Region," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(1), pages 1-16, January.
    3. Ana C Paixão Casaca & Peter B Marlow, 2007. "The Impact of the Trans-European Transport Networks on the Development of Short Sea Shipping," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 9(4), pages 302-323, December.
    4. Cullinane, Kevin & Toy, Neal, 2000. "Identifying influential attributes in freight route/mode choice decisions: a content analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(1), pages 41-53, March.
    5. Y.Y. Lau & César Ducruet & Adolf Ng & X. Fu, 2017. "Across the waves : A bibliometric analysis of container shipping research since the 1960s," Post-Print hal-03246929, HAL.
    6. Malchow, Matthew B. & Kanafani, Adib, 2004. "A disaggregate analysis of port selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(4), pages 317-337, July.
    7. Yui-Yip Lau & César Ducruet & Adolf K. Y. Ng & Xiaowen Fu, 2017. "Across the waves: a bibliometric analysis of container shipping research since the 1960s," Post-Print halshs-01619362, HAL.
    8. Yui-yip Lau & César Ducruet & Adolf K. Y. Ng & Xiaowen Fu, 2017. "Across the waves: a bibliometric analysis of container shipping research since the 1960s," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(6), pages 667-684, August.
    9. Piyush Tiwari & Hidekazu Itoh & Masayuki Doi, 2003. "Shippers' Port and Carrier Selection Behaviour in China: A Discrete Choice Analysis," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 5(1), pages 23-39, March.
    10. Francesca Medda & Lourdes Trujillo, 2010. "Short-sea shipping: an analysis of its determinants," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(3), pages 285-303, May.
    11. Ross Robinson, 2002. "Ports as elements in value-driven chain systems: the new paradigm," Maritime Policy & Management, Taylor & Francis Journals, vol. 29(3), pages 241-255.
    12. Jiang, Jianlin & Lee, Loo Hay & Chew, Ek Peng & Gan, Chee Chun, 2015. "Port connectivity study: An analysis framework from a global container liner shipping network perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 47-64.
    13. Tongzon, Jose L., 2009. "Port choice and freight forwarders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 186-195, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Xiwen & Cheng, Liangqi & Yang, Dong & Cai, Ouchen, 2022. "Does the traffic volume of a port determine connectivity? Revisiting port connectivity measures with high-frequency satellite data," Journal of Transport Geography, Elsevier, vol. 102(C).
    2. Sofia Agostinelli & Mehdi Neshat & Meysam Majidi Nezhad & Giuseppe Piras & Davide Astiaso Garcia, 2022. "Integrating Renewable Energy Sources in Italian Port Areas towards Renewable Energy Communities," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    3. Li, Weijun & Bai, Xiwen & Yang, Dong & Hou, Yao, 2023. "Maritime connectivity, transport infrastructure expansion and economic growth: A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    4. Tovar, Beatriz & Wall, Alan, 2022. "The relationship between port-level maritime connectivity and efficiency," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Chuanxu Wang & Xiaohan Dou & Hercules Haralambides, 2022. "Port centrality and the Composite Connectivity Index: Introducing a new concept in assessing the attractiveness of hub ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(1), pages 67-91, March.
    6. Feng, Mingxiang & Shaw, Shih-Lung & Peng, Guojun & Fang, Zhixiang, 2020. "Time efficiency assessment of ship movements in maritime ports: A case study of two ports based on AIS data," Journal of Transport Geography, Elsevier, vol. 86(C).
    7. Martínez-Moya, Julián & Feo-Valero, María, 2020. "Measuring foreland container port connectivity disaggregated by destination markets: An index for Short Sea Shipping services in Spanish ports," Journal of Transport Geography, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Shengda & Fu, Xiaowen & Bell, Michael G.H., 2021. "Container shipping line port choice patterns in East Asia the effects of port affiliation and spatial dependence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    2. Larranaga, Ana Margarita & Arellana, Julian & Senna, Luiz Afonso, 2017. "Encouraging intermodality: A stated preference analysis of freight mode choice in Rio Grande do Sul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 202-211.
    3. Su-Han Woo & Stephen Pettit & Anthony Beresford & Dong-Wook Kwak, 2012. "Seaport Research: A Decadal Analysis of Trends and Themes Since the 1980s," Transport Reviews, Taylor & Francis Journals, vol. 32(3), pages 351-377, January.
    4. Felipe Lobo Umbelino Souza & Cira Souza Pitombo & Dong Yang, 2021. "Port choice in Brazil: a qualitative research related to in-depth interviews," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-22, December.
    5. Martínez-Moya, Julián & Feo-Valero, María, 2022. "Do shippers’ characteristics influence port choice criteria? Capturing heterogeneity by using latent class models," Transport Policy, Elsevier, vol. 116(C), pages 96-105.
    6. Tapia, Rodrigo Javier & dos Santos Senna, Luiz Afonso & Larranaga, Ana Margarita & Cybis, Helena Beatriz Bettella, 2019. "Joint mode and port choice for soy production in Buenos Aires province, Argentina," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 100-118.
    7. Julián Martínez Moya & María Feo Valero, 2017. "Port choice in container market: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 300-321, May.
    8. Feo-Valero, María & Martínez-Moya, Julián, 2022. "Shippers vs. freight forwarders: Do they differ in their port choice decisions? Evidence from the Spanish ceramic tile industry," Research in Transportation Economics, Elsevier, vol. 95(C).
    9. David Guerrero, 2020. "A global analysis of hinterlands from a European perspective. In: Global Logistics Network Modelling and Policy: Quantification and Analysis for International Freight," Post-Print hal-02551947, HAL.
    10. Steven, Adams B. & Corsi, Thomas M., 2012. "Choosing a port: An analysis of containerized imports into the US," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 881-895.
    11. Jiannan, Cheng & feng, Lian & Zhongzhen, Yang, 2020. "Impacts of the choice habits of port users on the effects and efficiencies of port investment," Transport Policy, Elsevier, vol. 99(C), pages 203-214.
    12. Sang-Yoon Lee & Hyunwoo Lim & Hwa-Joong Kim, 2017. "Forecasting container port volume: implications for dredging," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 296-314, June.
    13. Liehui Wang & Yuanbo Zheng & César Ducruet & Fan Zhang, 2019. "Investment Strategy of Chinese Terminal Operators along the “21st-Century Maritime Silk Road”," Post-Print halshs-02092097, HAL.
    14. Sanchez Rodrigues, V. & Pettit, S. & Harris, I. & Beresford, A. & Piecyk, M. & Yang, Z. & Ng, A., 2015. "UK supply chain carbon mitigation strategies using alternative ports and multimodal freight transport operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 78(C), pages 40-56.
    15. Balci, Gökcay & Cetin, Ismail Bilge & Esmer, Soner, 2018. "An evaluation of competition and selection criteria between dry bulk terminals in Izmir," Journal of Transport Geography, Elsevier, vol. 69(C), pages 294-304.
    16. Liehui Wang & Yuanbo Zheng & Cesar Ducruet & Fan Zhang, 2019. "Investment Strategy of Chinese Terminal Operators along the “21st-Century Maritime Silk Road”," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    17. Flitsch, Verena & Brümmerstedt, Katrin, 2015. "Freight Transport Modelling of Container Hinterland Supply Chains," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Operational Excellence in Logistics and Supply Chains: Optimization Methods, Data-driven Approaches and Security Insights. Proceedings of the Hamburg , volume 22, pages 233-266, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    18. Vega, Laura & Cantillo, Víctor & Arellana, Julián, 2019. "Assessing the impact of major infrastructure projects on port choice decision: The Colombian case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 132-148.
    19. Kaliszewski, Adam & Kozłowski, Arkadiusz & Dąbrowski, Janusz & Klimek, Hanna, 2021. "LinkedIn survey reveals competitiveness factors of container terminals: Forwarders’ view," Transport Policy, Elsevier, vol. 106(C), pages 131-140.
    20. Tavasszy, Lóránt & Minderhoud, Michiel & Perrin, Jean-François & Notteboom, Theo, 2011. "A strategic network choice model for global container flows: specification, estimation and application," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1163-1172.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:44:y:2017:i:8:p:956-966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.