IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i504p1189-1204.html
   My bibliography  Save this article

Semiparametric Bayesian Estimation for Marginal Parametric Potential Outcome Modeling: Application to Causal Inference

Author

Listed:
  • Takahiro Hoshino

Abstract

We propose a new semiparametric Bayesian model for causal inference in which assignment to treatment depends on potential outcomes. The model uses the probit stick-breaking process mixture proposed by Chung and Dunson (2009), a variant of the Dirichlet process mixture modeling. In contrast to previous Bayesian models, the proposed model directly estimates the parameters of the marginal parametric model of potential outcomes, while it relaxes the strong ignorability assumption, and requires no parametric model assumption for the assignment model and conditional distribution of the covariate vector. The proposed estimation method is more robust than maximum likelihood estimation, in that it does not require knowledge of the full joint distribution of potential outcomes, covariates, and assignments. In addition, the method is more efficient than fully nonparametric Bayes methods. We apply this model to infer the differential effects of cognitive and noncognitive skills on the wages of production and nonproduction workers using panel data from the National Longitudinal Survey of Youth in 1979. The study also presents the causal effect of online word-of-mouth on Web site browsing behavior. Supplementary materials for this article are available online.

Suggested Citation

  • Takahiro Hoshino, 2013. "Semiparametric Bayesian Estimation for Marginal Parametric Potential Outcome Modeling: Application to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1189-1204, December.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1189-1204
    DOI: 10.1080/01621459.2013.835656
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.835656
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.835656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gill, Jeff & Casella, George, 2009. "Nonparametric Priors for Ordinal Bayesian Social Science Models: Specification and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 453-454.
    2. Qin J. & Leung D. & Shao J., 2002. "Estimation With Survey Data Under Nonignorable Nonresponse or Informative Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 193-200, March.
    3. Chung, Yeonseung & Dunson, David B., 2009. "Nonparametric Bayes Conditional Distribution Modeling With Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1646-1660.
    4. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz & Amy H. Herring, 2005. "Missing-Data Methods for Generalized Linear Models: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 332-346, March.
    5. Paul Gabriel, 2005. "The effects of differences in year-round, full-time labor market experience on gender wage levels in the United States," International Review of Applied Economics, Taylor & Francis Journals, vol. 19(3), pages 369-377.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    2. Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Instrumental Variable Estimation with Many Weak Instruments," Discussion Paper Series DP2018-14, Research Institute for Economics & Business Administration, Kobe University.
    3. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    4. Takahiro Hoshino & Ryosuke Igari, 2017. "Quasi-Bayesian Inference for Latent Variable Models with External Information: Application to generalized linear mixed models for biased data," Keio-IES Discussion Paper Series 2017-014, Institute for Economics Studies, Keio University.
    5. Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Multiple Imputation for Regression Models with Missing Mixed Continuous-Discrete Covariates," Discussion Paper Series DP2018-15, Research Institute for Economics & Business Administration, Kobe University.
    6. Dandan Xu & Michael J. Daniels & Almut G. Winterstein, 2018. "A Bayesian nonparametric approach to causal inference on quantiles," Biometrics, The International Biometric Society, vol. 74(3), pages 986-996, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    2. Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.
    3. Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Multiple Imputation for Regression Models with Missing Mixed Continuous-Discrete Covariates," Discussion Paper Series DP2018-15, Research Institute for Economics & Business Administration, Kobe University.
    4. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    5. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    6. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    7. Takahiro Hoshino & Yuya Shimizu, 2019. "Doubly Robust-type Estimation of Population Moments and Parameters in Biased Sampling," Keio-IES Discussion Paper Series 2019-006, Institute for Economics Studies, Keio University.
    8. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    9. Li Cai & Lijie Gu & Qihua Wang & Suojin Wang, 2021. "Simultaneous confidence bands for nonparametric regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1249-1279, December.
    10. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    12. McDonough, Ian K. & Millimet, Daniel L., 2017. "Missing data, imputation, and endogeneity," Journal of Econometrics, Elsevier, vol. 199(2), pages 141-155.
    13. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    14. Liverani, Silvia & Hastie, David I. & Azizi, Lamiae & Papathomas, Michail & Richardson, Sylvia, 2015. "PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i07).
    15. Xie Yanmei & Zhang Biao, 2017. "Empirical Likelihood in Nonignorable Covariate-Missing Data Problems," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-20, May.
    16. Yijie Xue & Nicole Lazar, 2012. "Empirical likelihood-based hot deck imputation methods," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 629-646.
    17. Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
    18. Lei Jin & Suojin Wang, 2010. "A Model Validation Procedure when Covariate Data are Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 403-421, September.
    19. J. F. Lawless, 2018. "Two-phase outcome-dependent studies for failure times and testing for effects of expensive covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 28-44, January.
    20. Villani, Mattias & Kohn, Robert & Nott, David J., 2012. "Generalized smooth finite mixtures," Journal of Econometrics, Elsevier, vol. 171(2), pages 121-133.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1189-1204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.