IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v94y2016icp98-119.html

A propensity score adjustment method for regression models with nonignorable missing covariates

Author

Listed:
  • Jiang, Depeng
  • Zhao, Puying
  • Tang, Niansheng

Abstract

In a linear regression model with nonignorable missing covariates, non-normal errors or outliers can lead to badly biased and misleading results with standard parameter estimation methods built on either least squares- or likelihood-based methods. A propensity score method with a robust and efficient regression procedure called composite quantile regression for parameter estimation of the linear regression model with nonignorable missing covariates is proposed. Semiparametric estimation of the propensity score is based on the exponentially tilted likelihood approach. Asymptotic properties of the proposed estimators are systematically investigated. The proposed method is resistant to heavy-tailed errors or outliers in the response. Simulation studies and real data applications are used to illustrate its potential impacts and benefits compared with conventional methods.

Suggested Citation

  • Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
  • Handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:98-119
    DOI: 10.1016/j.csda.2015.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001930
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sheng Wang & Jun Shao & Jae Kwang Kim, "undated". "An Instrumental Variable Approach for Identification and Estimation with Nonignorable Nonresponse," Mathematica Policy Research Reports a9593fac2c9746f486d2162f9, Mathematica Policy Research.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz & Amy H. Herring, 2005. "Missing-Data Methods for Generalized Linear Models: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 332-346, March.
    4. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    5. Ted Chang & Phillip S. Kott, 2008. "Using calibration weighting to adjust for nonresponse under a plausible model," Biometrika, Biometrika Trust, vol. 95(3), pages 555-571.
    6. repec:mpr:mprres:8160 is not listed on IDEAS
    7. Bo Kai & Runze Li & Hui Zou, 2010. "Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 49-69, January.
    8. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    9. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, January.
    10. Howard D. Bondell & Leonard A. Stefanski, 2013. "Efficient Robust Regression via Two-Stage Generalized Empirical Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 644-655, June.
    11. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    12. Kim, Jae Kwang & Yu, Cindy Long, 2011. "A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 157-165.
    13. Jiang, Rong & Zhou, Zhan-Gong & Qian, Wei-Min & Chen, Yong, 2013. "Two step composite quantile regression for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 180-191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowen Liang & Boping Tian, 2025. "Statistical inference for linear quantile regression with measurement error in covariates and nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(4), pages 523-549, May.
    2. Tang, Niansheng & Wang, Wenjun, 2019. "Robust estimation of generalized estimating equations with finite mixture correlation matrices and missing covariates at random for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 640-655.
    3. Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
    4. Xianwen Ding & Jiandong Chen & Xueping Chen, 2020. "Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 545-568, July.
    5. Zhan Liu & Chun Yip Yau, 2022. "A propensity score adjustment method for longitudinal time series models under nonignorable nonresponse," Statistical Papers, Springer, vol. 63(1), pages 317-342, February.
    6. Xianwen Ding & Xiaoxia Li, 2025. "Identification and Empirical Likelihood Inference in Nonlinear Regression Model with Nonignorable Nonresponse," Mathematics, MDPI, vol. 13(9), pages 1-26, April.
    7. Liu, Tianqing & Yuan, Xiaohui & Sun, Jianguo, 2021. "Weighted rank estimation for nonparametric transformation models with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    8. Zhang, Yan-Qing & Tang, Nian-Sheng, 2017. "Bayesian local influence analysis of general estimating equations with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 184-200.
    9. Luis Castro-Martín & María del Mar Rueda & Ramón Ferri-García & César Hernando-Tamayo, 2021. "On the Use of Gradient Boosting Methods to Improve the Estimation with Data Obtained with Self-Selection Procedures," Mathematics, MDPI, vol. 9(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
    2. Tai, Lingnan & Tao, Li & Pan, Jianxin & Tang, Man-lai & Yu, Keming & Härdle, Wolfgang Karl & Tian, Maozai, 2025. "Fully nonparametric inverse probability weighting estimation with nonignorable missing data and its extension to missing quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 206(C).
    3. Rong Jiang & Wei-Min Qian & Jing-Ru Li, 2014. "Testing in linear composite quantile regression models," Computational Statistics, Springer, vol. 29(5), pages 1381-1402, October.
    4. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
    6. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    7. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    8. Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.
    9. Lee, Min Cherng & Mitra, Robin, 2016. "Multiply imputing missing values in data sets with mixed measurement scales using a sequence of generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 24-38.
    10. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    11. Lavergne, Pascal, 2015. "Assessing the Approximate Validity of Moment Restrictions," TSE Working Papers 15-562, Toulouse School of Economics (TSE), revised May 2020.
    12. Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.
    13. Cui, Xia & Guo, Jianhua & Yang, Guangren, 2017. "On the identifiability and estimation of generalized linear models with parametric nonignorable missing data mechanism," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 64-80.
    14. De Silva, Dakshina G. & Hubbard, Timothy P. & Schiller, Anita R. & Tsionas, Mike G., 2023. "Estimating outcomes in the presence of endogeneity and measurement error with an application to R&D," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 278-294.
    15. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    16. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    17. Christophe Muller, 2018. "Optimal Cash Transfers with Distribution Regressions: An Application to Egypt at the Dawn of the XXIst Century," AMSE Working Papers 1802, Aix-Marseille School of Economics, France.
    18. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    19. Siming Zheng & Alan T. K. Wan & Yong Zhou, 2024. "Semiparametric recovery of central dimension reduction space with nonignorable nonresponse," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 374-396, May.
    20. Wang, Kangning & Zhang, Jingyu & Sun, Xiaofei, 2025. "Adaptive distributed smooth composite quantile regression estimation for large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:98-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.