IDEAS home Printed from
   My bibliography  Save this article

A Spatial-temporal Model for Temperature with Seasonal Variance


  • Jurate saltyte Benth
  • Fred Espen Benth
  • Paulius Jalinskas


We propose a spatial-temporal stochastic model for daily average surface temperature data. First, we build a model for a single spatial location, independently on the spatial information. The model includes trend, seasonality, and mean reversion, together with a seasonally dependent variance of the residuals. The spatial dependency is modelled by a Gaussian random field. Empirical fitting to data collected in 16 measurement stations in Lithuania over more than 40 years shows that our model captures the seasonality in the autocorrelation of the squared residuals, a property of temperature data already observed by other authors. We demonstrate through examples that our spatial-temporal model is applicable for prediction and classification.

Suggested Citation

  • Jurate saltyte Benth & Fred Espen Benth & Paulius Jalinskas, 2007. "A Spatial-temporal Model for Temperature with Seasonal Variance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(7), pages 823-841.
  • Handle: RePEc:taf:japsta:v:34:y:2007:i:7:p:823-841
    DOI: 10.1080/02664760701511398

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Šaltytė Benth, Jūratė & Benth, Fred Espen, 2012. "A critical view on temperature modelling for application in weather derivatives markets," Energy Economics, Elsevier, vol. 34(2), pages 592-602.
    2. Andrea Barth & Fred Espen Benth & Jurgen Potthoff, 2011. "Hedging of Spatial Temperature Risk with Market-Traded Futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(2), pages 93-117.
    3. Erhardt, Tobias Michael & Czado, Claudia & Schepsmeier, Ulf, 2015. "Spatial composite likelihood inference using local C-vines," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 74-88.
    4. repec:eee:reensy:v:152:y:2016:i:c:p:66-82 is not listed on IDEAS
    5. repec:hal:journl:halshs-01278126 is not listed on IDEAS
    6. Papa Ousmane Cissé & Abdou Kâ Diongue & Dominique Guegan, 2016. "Note on a new Seasonal Fractionally Integrated Separable Spatial Autoregressive Model," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01278126, HAL.
    7. Papa Ousmane Cissé & Abdou Kâ Diongue & Dominique Guegan, 2016. "Note on a new Seasonal Fractionally Integrated Separable Spatial Autoregressive Model," Documents de travail du Centre d'Economie de la Sorbonne 16013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Benth, Fred Espen & Saltyte Benth, Jurate, 2009. "Dynamic pricing of wind futures," Energy Economics, Elsevier, vol. 31(1), pages 16-24, January.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:34:y:2007:i:7:p:823-841. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.