IDEAS home Printed from
   My bibliography  Save this article

Calibrating the Black-Derman-Toy model: some theoretical results


  • Phelim Boyle
  • Ken Seng Tan
  • Weidong Tian


The Black-Derman-Toy (BDT) model is a popular one-factor interest rate model that is widely used by practitioners. One of its advantages is that the model can be calibrated to both the current market term structure of interest rate and the current term structure of volatilities. The input term structure of volatility can be either the short term volatility or the yield volatility. Sandmann and Sondermann derived conditions for the calibration to be feasible when the conditional short rate volatility is used. In this paper conditions are investigated under which calibration to the yield volatility is feasible. Mathematical conditions for this to happen are derived. The restrictions in this case are more complicated than when the short rate volatilities are used since the calibration at each time step now involves the solution of two non-linear equations. The theoretical results are illustrated by showing numerically that in certain situations the calibration based on the yield volatility breaks down for apparently plausible inputs. In implementing the calibration from period n to period n + 1, the corresponding yield volatility has to lie within certain bounds. Under certain circumstances these bounds become very tight. For yield volatilities that violate these bounds, the computed short rates for the period (n, n + 1) either become negative or else explode and this feature corresponds to the economic intuition behind the breakdown.

Suggested Citation

  • Phelim Boyle & Ken Seng Tan & Weidong Tian, 2001. "Calibrating the Black-Derman-Toy model: some theoretical results," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 27-48.
  • Handle: RePEc:taf:apmtfi:v:8:y:2001:i:1:p:27-48
    DOI: 10.1080/13504860110062049

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Heath, David & Jarrow, Robert & Morton, Andrew, 1990. "Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(04), pages 419-440, December.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    3. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    4. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    5. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
    6. K. Sandmann & Sondermann, D., 1993. "A Term Structure Model and the Pricing of Interest Rate Derivative," Discussion Paper Serie B 180, University of Bonn, Germany.
    7. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(02), pages 235-254, June.
    8. Michael J. Brennan and Eduardo S. Schwartz., 1979. "A Continuous-Time Approach to the Pricing of Bonds," Research Program in Finance Working Papers 85, University of California at Berkeley.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Dan Pirjol, 2015. "Hogan-Weintraub singularity and explosive behaviour in the Black-Derman-Toy model," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1243-1257, July.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:8:y:2001:i:1:p:27-48. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.