IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v39y2025i9d10.1007_s11269-025-04159-w.html
   My bibliography  Save this article

Numerical Simulation of Dynamic Process of Dam-break Flood and its Impact on Downstream Dam Surface

Author

Listed:
  • Shubing Dai

    (Northwest a&F University Shenzhen Research Institute
    Sichuan University
    Northwest a&F University
    Northwest a&F University)

  • Yifan Wang

    (Northwest a&F University)

  • Jiaqi Guo

    (Northwest a&F University)

  • Ruihao Song

    (Northwest a&F University)

  • Zhaolin Shi

    (Northwest a&F University)

  • Shuya Yang

    (Northwest a&F University)

  • Zhe Zhang

    (Northwest a&F University)

  • Kuandi Zhang

    (Northwest a&F University
    Northwest a&F University)

  • Hansheng Liu

    (Northwest a&F University
    Northwest a&F University)

  • Sheng Jin

    (Dalian University of Technology)

Abstract

Dam-break floods are among the most devastating natural disasters, causing significant casualties and property losses globally. However, current research primarily emphasizes macroscopic quantities such as water level, with a limited focus on detailed spatiotemporal hydrodynamics, particularly downstream flood impacts. This study employs a depth-integrated shallow water model based on the finite volume method to examine the influence of dam spacing, bed slope, and upstream and downstream water depths on flood dynamics processes and their impacts on downstream dams. The key findings include: (1) Larger dam spacings delay flood arrival downstream, increasing the water depth, Froude number, discharge, shear stress, velocity, and impact pressure. (2) Steeper bed slopes increase the Froude number, shear stress, velocity, and impact pressure, while the discharge and water depth exhibit inconsistent changes at different gauge points. As the bed slope increased from 4° to 12°, the impact pressure almost doubled. (3) Higher upstream water levels increase the water depth, discharge, velocity, and downstream impact pressure but reduce shear stress, with inconsistent changes in the Froude number. The peak impact pressure at ho = 0.25 m is more than two times higher than that when ho = 0.1 m. (4) Increased downstream initial depths increase the downstream water depth, discharge, and impact pressure while reducing shear stress, with similar changes observed in velocity and Froude number. Overall, this study provides new insights into the hydrodynamic processes of dam-break floods and their impacts on downstream dam surfaces.

Suggested Citation

  • Shubing Dai & Yifan Wang & Jiaqi Guo & Ruihao Song & Zhaolin Shi & Shuya Yang & Zhe Zhang & Kuandi Zhang & Hansheng Liu & Sheng Jin, 2025. "Numerical Simulation of Dynamic Process of Dam-break Flood and its Impact on Downstream Dam Surface," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(9), pages 4361-4391, July.
  • Handle: RePEc:spr:waterr:v:39:y:2025:i:9:d:10.1007_s11269-025-04159-w
    DOI: 10.1007/s11269-025-04159-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-025-04159-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-025-04159-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mohsin Butt & Muhammad Umar & Raheel Qamar, 2013. "Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 241-254, January.
    2. George Tsakiris & Mike Spiliotis, 2013. "Dam- Breach Hydrograph Modelling: An Innovative Semi- Analytical Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1751-1762, April.
    3. Hasan Oğulcan Marangoz & Tuğce Anılan & Servet Karasu, 2024. "Investigating the Non-Linear Effects of Breach Parameters on a Dam Break Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(5), pages 1773-1790, March.
    4. Michael Marshall, 2023. "Libya floods: how climate change intensified the death and devastation," Nature, Nature, vol. 621(7979), pages 452-453, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baojun Guan & Jingming Hou & Jiahao Lv & Donglai Li & Guangzhao Chen & Yuan Fang & Lei Shi, 2025. "Numerical Simulation of Dam-Break Flood Routing in Pumped Storage Power Stations with Multi-Conditions and Disaster Impact Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(2), pages 741-757, January.
    2. Junxue Ma & Jian Chen & Zhijiu Cui & Wendy Zhou & Ruichen Chen & Chengbiao Wang, 2022. "Reconstruction of catastrophic outburst floods of the Diexi ancient landslide-dammed lake in the Upper Minjiang River, Eastern Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1191-1221, June.
    3. Chi-Feng Chen & Chung-Ming Liu, 2014. "The definition of urban stormwater tolerance threshold and its conceptual estimation: an example from Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 173-190, September.
    4. Vasilis Bellos & George Tsakiris, 2015. "Comparing Various Methods of Building Representation for 2D Flood Modelling In Built-Up Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 379-397, January.
    5. Sen Tian & Xuanyan Dai & Guangjin Wang & Yiyu Lu & Jie Chen, 2021. "Formation and evolution characteristics of dam breach and tailings flow from dam failure: an experimental study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1621-1638, June.
    6. Saad SH. Sammen & T. A. Mohamed & A. H. Ghazali & A. H. El-Shafie & L. M. Sidek, 2017. "Generalized Regression Neural Network for Prediction of Peak Outflow from Dam Breach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 549-562, January.
    7. Alibek Issakhov & Yeldos Zhandaulet, 2020. "Numerical Study of Dam Break Waves on Movable Beds for Complex Terrain by Volume of Fluid Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 463-480, January.
    8. Arian Eghbali & Mehdi Soltanabadi & Mitra Javan & Omid Mohseni, 2025. "Assessment of a Tailings Dam Breach by Experimental, Numerical, and Gene-Expression Programming Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(10), pages 4763-4778, August.
    9. Alireza Khoshkonesh & Seyed Hossein Sadeghi & Saeed Gohari & Somayyeh Karimpour & Shahin Oodi & Silvia Francesco, 2023. "Study of Dam-Break Flow Over a Vegetated Channel With and Without a Drop," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2107-2123, March.
    10. Ismail Haltas & Gokmen Tayfur & Sebnem Elci, 2016. "Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2103-2119, April.
    11. Hasnain Gardezi & Muhammad Bilal & Qiangong Cheng & Aiguo Xing & Yu Zhuang & Tahir Masood, 2021. "A comparative analysis of attabad landslide on january 4, 2010, using two numerical models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 519-538, May.
    12. Alireza Khoshkonesh & Blaise Nsom & Farhad Bahmanpouri & Fariba Ahmadi Dehrashid & Atefeh Adeli, 2021. "Numerical Study of the Dynamics and Structure of a Partial Dam-Break Flow Using the VOF Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1513-1528, March.
    13. Ali El Bilali & Abdeslam Taleb, 2025. "A Novel Approach for Predicting peak flow from Breached Dam: Coupling Monte Carlo Simulation, Hydrodynamic Model, and an Interpretable XGBoost Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1177-1194, February.
    14. Francesco Macchione & Gianluca De Lorenzo & Pierfranco Costabile & Babak Razdar, 2016. "The Power Function for Representing the Reservoir Rating Curve: Morphological Meaning and Suitability for Dam Breach Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4861-4881, October.
    15. Jianqi Zhuang & Kecheng Jia & Jiewei Zhan & Yi Zhu & Chenglong Zhang & Jiaxu Kong & Chenhui Du & Shibao Wang & Yanbo Cao & Jianbing Peng, 2022. "Scenario simulation of the geohazard dynamic process of large-scale landslides: a case study of the Xiaomojiu landslide along the Jinsha River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1337-1357, June.
    16. Yanshun Liu & Xiao Zhang & Yuxue Sun & Hao Yu & Chuanyu Sun & Zihan Li & Xianghui Li, 2025. "Characterization of Partial Dam-Break Waves: Effects of Upstream and Downstream Water Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(2), pages 759-777, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:9:d:10.1007_s11269-025-04159-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.