Author
Abstract
Empirical evidence from documented tailings dam failures highlights the severe consequences for economic systems, human lives, and ecological integrity. The spatial distribution and depositional configuration of tailings within the impoundment structure are regarded as the critical factors influencing the heterogeneous behavioral responses during failure events. This study uses experimental and numerical approaches to investigate the influence of a lateral slope of non-liquefied tailings on localized tailings dam breach mechanisms. The HEC-RAS 2D model was employed to simulate failure scenarios, with the numerical model calibrated against experimental data to evaluate flow characteristics and hydrograph profiles under conditions with and without a lateral slope. Gene-Expression Programming (GEP) was successfully applied to predict flood hydrographs at the failure location based on the simulated data. Results indicate that erosion in the direction perpendicular to the dam is more pronounced in the presence of a lateral tailings slope compared to the scenario without a lateral slope. While a 2% lateral slope exerts minimal influence on the outflow hydrograph, it reduces tailings erosion from the reservoir by approximately 1.3 times in localized failure scenarios. The GEP-derived formula demonstrated high accuracy in computing the flood hydrograph, offering a reliable approach for predicting tailings dam breach-induced flooding.
Suggested Citation
Arian Eghbali & Mehdi Soltanabadi & Mitra Javan & Omid Mohseni, 2025.
"Assessment of a Tailings Dam Breach by Experimental, Numerical, and Gene-Expression Programming Model,"
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(10), pages 4763-4778, August.
Handle:
RePEc:spr:waterr:v:39:y:2025:i:10:d:10.1007_s11269-025-04172-z
DOI: 10.1007/s11269-025-04172-z
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:10:d:10.1007_s11269-025-04172-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.