IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v39y2025i1d10.1007_s11269-024-03960-3.html
   My bibliography  Save this article

Study on Flood Control Operation of Parallel Reservoir Groups Considering the Difference of Solution Order

Author

Listed:
  • Qiong Wu

    (Huazhong University of Science and Technology)

  • Zhiqiang Jiang

    (Huazhong University of Science and Technology)

  • Zongye Chang

    (Huazhong University of Science and Technology)

  • Suiling Wang

    (Huazhong University of Science and Technology)

Abstract

In solving the joint optimal operation problem of reservoir groups, traditional optimization methods suffer from the defects of “dimension disaster”, premature convergence, and low efficiency. In this paper, an improved dynamic programming (DP) method is proposed, which reduces the dimension of the DP by using dynamic water level limits and a variable discrete mechanism. This approach improves computational efficiency while ensuring calculation accuracy. Taking the 5-reservoirs system in the Liuxi River Basin as the research object, and aiming at minimizing flood peak discharge at the control section in the lower reaches, an optimal operation model for joint flood control of the reservoir group is established. Based on the improved DP with dimensionality reduction, and considering the differences in scheduling order of the reservoirs, the model is solved. Through the comparison of the calculation results, it is found that the peak flow at the outlet section of the basin from positive sequence optimization is reduced by 24% compared with conventional operation. This fully exploits the role of peak shaving and shifting, which is conducive to the safety and stability of the downstream river. In addition, the flow peak obtained by the reverse sequence optimization at the outlet section is the smallest, being 12% lower than the positive sequence optimization and 0.7% lower than the mixed sequence optimization. This better achieves the purpose of joint peak cutting and peak staggering. The new algorithm can improve computational speed, and the model that offer higher safety and stability in scheduling has practical significance.

Suggested Citation

  • Qiong Wu & Zhiqiang Jiang & Zongye Chang & Suiling Wang, 2025. "Study on Flood Control Operation of Parallel Reservoir Groups Considering the Difference of Solution Order," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 109-125, January.
  • Handle: RePEc:spr:waterr:v:39:y:2025:i:1:d:10.1007_s11269-024-03960-3
    DOI: 10.1007/s11269-024-03960-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03960-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03960-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ignacio Marín Cruz & Mohamed Badaoui & Ricardo Mota Palomino, 2023. "Medium-Term Hydrothermal Scheduling of the Infiernillo Reservoir Using Stochastic Dual Dynamic Programming (SDDP): A Case Study in Mexico," Energies, MDPI, vol. 16(17), pages 1-26, August.
    2. Fuxin Chai & Feng Peng & Hongping Zhang & Wenbin Zang, 2023. "Stable Improved Dynamic Programming Method: An Efficient and Accurate Method for Optimization of Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(14), pages 5635-5654, November.
    3. Suiling Wang & Zhiqiang Jiang & Yi Liu, 2022. "Dimensionality Reduction Method of Dynamic Programming under Hourly Scale and Its Application in Optimal Scheduling of Reservoir Flood Control," Energies, MDPI, vol. 15(3), pages 1-17, January.
    4. Sharon A. Johnson & Jery R. Stedinger & Christine A. Shoemaker & Ying Li & José Alberto Tejada-Guibert, 1993. "Numerical Solution of Continuous-State Dynamic Programs Using Linear and Spline Interpolation," Operations Research, INFORMS, vol. 41(3), pages 484-500, June.
    5. Chen Chen & Yanbin Yuan & Xiaohui Yuan, 2017. "An Improved NSGA-III Algorithm for Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4469-4483, November.
    6. Hai-tao Chen & Wen-chuan Wang & Kwok-wing Chau & Lei Xu & Ji He, 2021. "Flood Control Operation of Reservoir Group Using Yin-Yang Firefly Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5325-5345, December.
    7. Yichao Xu & Zhiqiang Jiang & Yi Liu & Li Zhang & Jiahao Yang & Hairun Shu, 2023. "An Adaptive Ensemble Framework for Flood Forecasting and Its Application in a Small Watershed Using Distinct Rainfall Interpolation Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2195-2219, March.
    8. A. Moridi & J. Yazdi, 2017. "Optimal Allocation of Flood Control Capacity for Multi-Reservoir Systems Using Multi-Objective Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4521-4538, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji He & Wen Guo & Songlin Wang & Haitao Chen & Xiaoqi Guo & Shumin Li, 2024. "Application of Multi-Strategy Based Improved DBO Algorithm in Optimal Scheduling of Reservoir Groups," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 1883-1901, April.
    2. Guangyun Cui & Zhen Qi & Huaqing Zhao & Ranhang Zhao & Haofang Wang & Jiaxing Zhao, 2025. "Application of F-HGAPSO Algorithm in Reservoir Flood Control Optimal Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(4), pages 1763-1782, March.
    3. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
    4. Per Krusell & Anthony A. Smith & Jr., 1998. "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 867-896, October.
    5. Khan, Aubhik & Thomas, Julia K., 2003. "Nonconvex factor adjustments in equilibrium business cycle models: do nonlinearities matter?," Journal of Monetary Economics, Elsevier, vol. 50(2), pages 331-360, March.
    6. Drouin, Nicol & Gautier, Antoine & Lamond, Bernard F. & Lang, Pascal, 1996. "Piecewise affine approximations for the control of a one-reservoir hydroelectric system," European Journal of Operational Research, Elsevier, vol. 89(1), pages 53-69, February.
    7. Gianluca Benigno & Huigang Chen & Christopher Otrok & Alessandro Rebucci & Eric R. Young, 2011. "Revisiting Overborrowing and its Policy Implications," Central Banking, Analysis, and Economic Policies Book Series, in: Luis Felipe Céspedes & Roberto Chang & Diego Saravia (ed.),Monetary Policy under Financial Turbulence, edition 1, volume 16, chapter 6, pages 145-184, Central Bank of Chile.
    8. King, Robert P. & Lohano, Heman D., 2006. "Accuracy of Numerical Solution to Dynamic Programming Models," Staff Papers 14230, University of Minnesota, Department of Applied Economics.
    9. Victoria C. P. Chen & David Ruppert & Christine A. Shoemaker, 1999. "Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming," Operations Research, INFORMS, vol. 47(1), pages 38-53, February.
    10. Navid Shenava & Mojtaba Shourian, 2018. "Optimal Reservoir Operation with Water Supply Enhancement and Flood Mitigation Objectives Using an Optimization-Simulation Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4393-4407, October.
    11. Lars Grüne & Willi Semmler, 2007. "Asset pricing with dynamic programming," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 233-265, May.
    12. Mahboubeh Khorsandi & Parisa-Sadat Ashofteh & Firoozeh Azadi & Xuefeng Chu, 2022. "Multi-Objective Firefly Integration with the K-Nearest Neighbor to Reduce Simulation Model Calls to Accelerate the Optimal Operation of Multi-Objective Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3283-3304, July.
    13. Amir Hatamkhani & Ali Moridi, 2019. "Multi-Objective Optimization of Hydropower and Agricultural Development at River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4431-4450, October.
    14. Luckny Zephyr & Bernard F. Lamond & Pascal Lang, 2024. "Hybrid simplicial-randomized approximate stochastic dynamic programming for multireservoir optimization," Computational Management Science, Springer, vol. 21(1), pages 1-44, June.
    15. Pontus Rendahl, 2015. "Inequality Constraints and Euler Equation‐based Solution Methods," Economic Journal, Royal Economic Society, vol. 125(585), pages 1110-1135, June.
    16. Mahdi Sedighkia & Bithin Datta, 2022. "A simulation-optimization system for evaluating flood management and environmental flow supply by reservoirs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2855-2879, April.
    17. Chen, Shuang & Hu, Minghui & Guo, Shanqi, 2023. "Fast dynamic-programming algorithm for solving global optimization problems of hybrid electric vehicles," Energy, Elsevier, vol. 273(C).
    18. Judd, Kenneth L., 1997. "Computational economics and economic theory: Substitutes or complements?," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 907-942, June.
    19. Mojtaba Poursaeid & Amir Hossein Poursaeed & Saeid Shabanlou, 2025. "Water Resources Quality Indicators Monitoring by Nonlinear Programming and Simulated Annealing Optimization with Ensemble Learning Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1073-1087, February.
    20. Ailing Xu & Li Mo & Qi Wang, 2022. "Research on Operation Mode of the Yalong River Cascade Reservoirs Based on Improved Stochastic Fractal Search Algorithm," Energies, MDPI, vol. 15(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:1:d:10.1007_s11269-024-03960-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.