IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i8d10.1007_s11269-024-03786-z.html
   My bibliography  Save this article

Agricultural Water Resource Management in the Socio-Hydrology: A Framework for Using System Dynamics Simulation

Author

Listed:
  • Fatemeh Javanbakht-Sheikhahmad

    (Razi Univeristy)

  • Farahnaz Rostami

    (Razi Univeristy)

  • Hossein Azadi

    (University of Liège)

  • Hadi Veisi

    (Kirchhoff Lab, Penn State University
    Shahid Beheshti University)

  • Farzad Amiri

    (Kermanshah Univeristy of Technology)

  • Frank Witlox

    (Ghent University)

Abstract

Population growth, coupled with climate and social shifts, has resulted in a global phenomenon of water scarcity. Yet, the effect of social factors on water resources has been poorly studied. Hence, this study aimed to identify the key parameters in social systems that significantly impact hydrological system change and presents the best scenario for water management. The system dynamic (SD) approach was employed in this research to construct a combined framework of policies based on scenarios, which aimed to ensure social sustainability and coupled human-water systems. For this purpose, the SD model was simulated on the Gavshan Basin in the west of Iran for the long-term period 2020-2050. The results indicate that the water resources in the Gavshan Basin cannot meet the growth of the population. Meanwhile, about 20% of the water stored in the Gavshan Dam is not effectively used and flows out of the irrigation network as wastewater. The result of the sensitivity analysis showed that in scenarios 3 and 4, the policy of wastewater reuse in the agricultural sector significantly increases available water resources, has a major impact on water supply, and increases crop yields. These findings can be applied by policy-makers. Instead of making efforts only to change hydrological systems, policies need to first focus on socio-hydrology systems sustainability. It is suggested that national organizations' support should be implemented to prevent the adverse consequences of wastewater reuse in agriculture and reduce treated wastewater risks.

Suggested Citation

  • Fatemeh Javanbakht-Sheikhahmad & Farahnaz Rostami & Hossein Azadi & Hadi Veisi & Farzad Amiri & Frank Witlox, 2024. "Agricultural Water Resource Management in the Socio-Hydrology: A Framework for Using System Dynamics Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 2753-2772, June.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:8:d:10.1007_s11269-024-03786-z
    DOI: 10.1007/s11269-024-03786-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03786-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03786-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kathleen C. Stosch & Richard S. Quilliam & Nils Bunnefeld & David M. Oliver, 2022. "Catchment-Scale Participatory Mapping Identifies Stakeholder Perceptions of Land and Water Management Conflicts," Land, MDPI, vol. 11(2), pages 1-20, February.
    2. Morteza Tahamipour & Mina Mahmoudi, 2018. "The Role of Agricultural Sector Productivity in Economic Growth: The Case of Iran's Economic Development Plan," Papers 1806.04235, arXiv.org.
    3. Kamil Serto lu & Sevin Ugural & Festus Victor Bekun, 2017. "The Contribution of Agricultural Sector on Economic Growth of Nigeria," International Journal of Economics and Financial Issues, Econjournals, vol. 7(1), pages 547-552.
    4. Qianjin Dong & Xu Zhang & Yalin Chen & Debin Fang, 2019. "Dynamic Management of a Water Resources-Socioeconomic-Environmental System Based on Feedbacks Using System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2093-2108, April.
    5. Jeong, Hanseok & Bhattarai, Rabin & Adamowski, Jan & Yu, David J., 2020. "Insights from socio-hydrological modeling to design sustainable wastewater reuse strategies for agriculture at the watershed scale," Agricultural Water Management, Elsevier, vol. 231(C).
    6. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    7. Veisi, Hadi & Deihimfard, Reza & Shahmohammadi, Alireza & Hydarzadeh, Yasoub, 2022. "Application of the analytic hierarchy process (AHP) in a multi-criteria selection of agricultural irrigation systems," Agricultural Water Management, Elsevier, vol. 267(C).
    8. Rakhshinda Bano & Mehdi Khiadani & Yong Sebastian Nyam, 2022. "System Archetypes Underlying Formal-Informal Urban Water Supply Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4995-5010, October.
    9. Govindamal Thangiah & Mas Ayu Said & Hazreen Abdul Majid & Daniel Reidpath & Tin Tin Su, 2020. "Income Inequality in Quality of Life among Rural Communities in Malaysia: A Case for Immediate Policy Consideration," IJERPH, MDPI, vol. 17(23), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Phiri & Karel Malec & Socrates Kraido Majune & Seth Nana Kwame Appiah-Kubi & Zdeňka Gebeltová & Mansoor Maitah & Kamil Maitah & Kamal Tasiu Abdullahi, 2020. "Agriculture as a Determinant of Zambian Economic Sustainability," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    2. Xiaoxia Li, 2022. "Research on the Development Level of Rural E-Commerce in China Based on Analytic Hierarchy and Systematic Clustering Method," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    3. Mamba, Essotanam & Ali, Essossinam, 2022. "Do agricultural exports enhance agricultural (economic) growth? Lessons from ECOWAS countries," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 257-267.
    4. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    5. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    6. Zijie Sang & Ge Zhang & Haiqing Wang & Wangyang Zhang & Yuxiu Chen & Mingyang Han & Ke Yang, 2023. "Effective Solutions to Ecological and Water Environment Problems in the Sanjiang Plain: Utilization of Farmland Drainage Resources," Sustainability, MDPI, vol. 15(23), pages 1-14, November.
    7. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    8. Hezam, Ibrahim M. & Ali, Ahmed M. & Sallam, Karam & Hameed, Ibrahim A. & Abdel-Basset, Mohamed, 2024. "An efficient decision-making model for evaluating irrigation systems under uncertainty: Toward integrated approaches to sustainability," Agricultural Water Management, Elsevier, vol. 303(C).
    9. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    10. Yong Li & Liping Wang & Yunfei Yu & Deqiang Zang & Xilong Dai & Shufeng Zheng, 2024. "Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China," Sustainability, MDPI, vol. 16(8), pages 1-23, April.
    11. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    12. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    13. Haizhen Su & Fenggui Liu & Haifeng Zhang & Xiaofan Ma & Ailing Sun, 2024. "Progress and Prospects of Non-Grain Production of Cultivated Land in China," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
    14. Shuai Xie & Guanyi Yin & Wei Wei & Qingzhi Sun & Zhan Zhang, 2022. "Spatial–Temporal Change in Paddy Field and Dryland in Different Topographic Gradients: A Case Study of China during 1990–2020," Land, MDPI, vol. 11(10), pages 1-20, October.
    15. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    16. Shenghao Zhu & Guanyi Yin & Qingzhi Sun & Zhan Zhang & Guanghao Li & Liangfei Gao, 2025. "Structural Changes to China’s Agricultural Business Entities System Under the Perspective of Competitive Evolution," Sustainability, MDPI, vol. 17(7), pages 1-20, March.
    17. Mary O. Agboola & Festus V. Bekun, 2019. "Does Agricultural Value Added Induce Environmental Degradation? Empirical Evidence from an Agrarian Country," CEREDEC Working Papers 19/040, Centre de Recherche pour le Développement Economique (CEREDEC).
    18. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    19. Simi Goyol & Chaminda Pathirage, 2018. "Farmers Perceptions of Climate Change Related Events in Shendam and Riyom, Nigeria," Economies, MDPI, vol. 6(4), pages 1-26, December.
    20. Wu, Xiaoran & Zhao, Na & Wang, Yuwei & Zhang, Liqiang & Wang, Wei & Liu, Yansui, 2024. "Cropland non-agriculturalization caused by the expansion of built-up areas in China during 1990–2020," Land Use Policy, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:8:d:10.1007_s11269-024-03786-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.