IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i5d10.1007_s11269-024-03748-5.html
   My bibliography  Save this article

A Novel Runoff Prediction Model Based on Support Vector Machine and Gate Recurrent unit with Secondary Mode Decomposition

Author

Listed:
  • Jinghan Dong

    (Shanghai Ocean University)

  • Zhaocai Wang

    (Shanghai Ocean University)

  • Junhao Wu

    (Shanghai Ocean University)

  • Xuefei Cui

    (Shanghai Ocean University)

  • Renlin Pei

    (Shanghai Ocean University)

Abstract

Predicting runoff, one of the fundamental operations in hydrology, is crucial for directing the complete exploitation and use of local water resources. However, influenced by factors such as human activities and climate change, runoff displays typical nonlinear, non-stationary dynamic characteristics, which means it is challenging to achieve accurate runoff prediction in the research on water resources. In this research, we developed a hybrid model named CEEMDAN-FE-VMD-SVM-GRU for runoff prediction, which was built on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), fuzzy entropy (FE), variational mode decomposition (VMD), support vector machine (SVM), and gate recurrent unit (GRU). First, CEEMDAN was used to decompose the original daily runoff dataset into several intrinsic mode functions (IMF), followed by the introduction of FE to compute the complexity of each IMF component. The obtained FE calculation results greater than 0.4 were set as high-frequency sequences, and those lower than 0.4 as low-frequency sequences. Then, VMD was applied to perform the secondary decomposition of the high-frequency sequences, and SVM and GRU were trained to predict the primary and secondary decomposition parts, respectively. The results were finally obtained through linear combination. In this study, the daily runoff of the Minjiang River by this model was compared with those of other eight models. The findings demonstrate that the proposed model worked better than other models in a variety of evaluation metrics. In addition, this model showed better applicability in uncertainty interval estimation and flood prediction. Hence, this model proposed in this study has potential to be a preferred data-driven tool in hydrological prediction.

Suggested Citation

  • Jinghan Dong & Zhaocai Wang & Junhao Wu & Xuefei Cui & Renlin Pei, 2024. "A Novel Runoff Prediction Model Based on Support Vector Machine and Gate Recurrent unit with Secondary Mode Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(5), pages 1655-1674, March.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:5:d:10.1007_s11269-024-03748-5
    DOI: 10.1007/s11269-024-03748-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03748-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03748-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Mirzaee & R. Fazloula, 2016. "Runoff Prediction by Support Vector Machine for Chalous River Basin of Iran," International Journal of Geography and Geology, Conscientia Beam, vol. 5(6), pages 113-118.
    2. Liu, Zelin & Peng, Changhui & Xiang, Wenhua & Deng, Xiangwen & Tian, DaLun & Zhao, Meifang & Yu, Guirui, 2012. "Simulations of runoff and evapotranspiration in Chinese fir plantation ecosystems using artificial neural networks," Ecological Modelling, Elsevier, vol. 226(C), pages 71-76.
    3. Junhao Wu & Zhaocai Wang & Yuan Hu & Sen Tao & Jinghan Dong, 2023. "Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 937-953, January.
    4. Mack, Y. P. & Rosenblatt, M., 1979. "Multivariate k-nearest neighbor density estimates," Journal of Multivariate Analysis, Elsevier, vol. 9(1), pages 1-15, March.
    5. Yun Bai & Nejc Bezak & Bo Zeng & Chuan Li & Klaudija Sapač & Jin Zhang, 2021. "Daily Runoff Forecasting Using a Cascade Long Short-Term Memory Model that Considers Different Variables," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1167-1181, March.
    6. Abhinav Kumar Singh & Pankaj Kumar & Rawshan Ali & Nadhir Al-Ansari & Dinesh Kumar Vishwakarma & Kuldeep Singh Kushwaha & Kanhu Charan Panda & Atish Sagar & Ehsan Mirzania & Ahmed Elbeltagi & Alban Ku, 2022. "An Integrated Statistical-Machine Learning Approach for Runoff Prediction," Sustainability, MDPI, vol. 14(13), pages 1-30, July.
    7. P Mirzaee & R Fazloula, 2016. "Runoff Prediction by Support Vector Machine for Chalous River Basin of Iran," International Journal of Geography and Geology, Conscientia Beam, vol. 5(6), pages 113-118.
    8. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    9. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    2. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    3. Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
    4. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    5. Yanrong Liu & Zhongqiu Meng & Lei Zhu & Di Hu & Handong He, 2023. "Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    6. Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
    7. Ali Danandeh Mehr & Vahid Nourani, 2018. "Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2665-2679, June.
    8. Fu Qiao, 2020. "Study on Price Fluctuation of Industry Index in Chinas Stock Market Based on Empirical Mode Decomposition," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 10(5), pages 559-573, May.
    9. Ervin Shan Khai Tiu & Yuk Feng Huang & Jing Lin Ng & Nouar AlDahoul & Ali Najah Ahmed & Ahmed Elshafie, 2022. "An evaluation of various data pre-processing techniques with machine learning models for water level prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 121-153, January.
    10. Zong-chang Yang, 2018. "Predictive Modeling of Hourly Water-Level Fluctuations Based on the DCT Least-Squares Extended Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1117-1131, February.
    11. Emanuele Ogliari & Alfredo Nespoli & Marco Mussetta & Silvia Pretto & Andrea Zimbardo & Nicholas Bonfanti & Manuele Aufiero, 2020. "A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network," Forecasting, MDPI, vol. 2(4), pages 1-19, October.
    12. Penrose, Mathew D., 2000. "Central limit theorems for k-nearest neighbour distances," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 295-320, February.
    13. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
    14. Lucio Barabesi, 2001. "Local parametric density estimation methods in line transect sampling," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 22-38.
    15. Wen-jing Niu & Zhong-kai Feng & Yu-rong Li & Shuai Liu, 2021. "Cooperation Search Algorithm for Power Generation Production Operation Optimization of Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2465-2485, June.
    16. Tomasz Jetka & Karol Nienałtowski & Tomasz Winarski & Sławomir Błoński & Michał Komorowski, 2019. "Information-theoretic analysis of multivariate single-cell signaling responses," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-23, July.
    17. Nie Zhou & Jingming Hou & Hua Chen & Guangzhao Chen & Bingyi Liu, 2024. "A Rapid Forecast Method for the Process of Flash Flood Based on Hydrodynamic Model and KNN Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 1903-1919, April.
    18. Li, Wei-Qin & Chang, Li, 2018. "A combination model with variable weight optimization for short-term electrical load forecasting," Energy, Elsevier, vol. 164(C), pages 575-593.
    19. Wang, Xiaogang & Qiu, Weiliang & Zamar, Ruben H., 2007. "CLUES: A non-parametric clustering method based on local shrinking," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 286-298, September.
    20. Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:5:d:10.1007_s11269-024-03748-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.