IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i4d10.1007_s11269-020-02759-2.html
   My bibliography  Save this article

Daily Runoff Forecasting Using a Cascade Long Short-Term Memory Model that Considers Different Variables

Author

Listed:
  • Yun Bai

    (Chongqing Technology and Business University
    University of Algarve)

  • Nejc Bezak

    (University of Ljubljana)

  • Bo Zeng

    (Chongqing Technology and Business University)

  • Chuan Li

    (Chongqing Technology and Business University)

  • Klaudija Sapač

    (University of Ljubljana)

  • Jin Zhang

    (Jinan University)

Abstract

Accurate forecasts of daily runoff are essential for facilitating efficient resource planning and management of a hydrological system. In practice, daily runoff is needed for various practical applications and can be predicted using precipitation and evapotranspiration data. To this end, a long short-term memory (LSTM) under a cascade framework (C-LSTM) approach is proposed for forecasting daily runoff. This C-LSTM model is composed of a 2-level forecasting process. (1) In the first level, an LSTM is established to learn the relationship between the precipitation and evapotranspiration at present and to learn several meteorological variables one day in advance. (2) In the second level, an LSTM is constructed to forecast the daily runoff using the historical and simulated precipitation and evapotranspiration data produced by the first LSTM. Through cascade modeling, the complex features of the numerous targets in the different stages can be sufficiently extracted and learned by multiple models in a single framework. In order to evaluate the performance of the C-LSTM approach, four mesoscale sub-catchments of the Ljubljanica River in Slovenia were investigated. The results indicate that based on the root-mean-square error, the Pearson correlation coefficient, and the Nash-Sutcliffe model efficiency coefficient, the proposed model yields better results than two other tested models, including the normal LSTM and other neural network approaches. Based on the results of this study, we conclude that the LSTM under the cascade architecture is a valuable approach and can be regarded as a promising model for forecasting daily runoff.

Suggested Citation

  • Yun Bai & Nejc Bezak & Bo Zeng & Chuan Li & Klaudija Sapač & Jin Zhang, 2021. "Daily Runoff Forecasting Using a Cascade Long Short-Term Memory Model that Considers Different Variables," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1167-1181, March.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:4:d:10.1007_s11269-020-02759-2
    DOI: 10.1007/s11269-020-02759-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02759-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02759-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chuan Li & Yun Bai & Bo Zeng, 2016. "Deep Feature Learning Architectures for Daily Reservoir Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5145-5161, November.
    2. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    3. Yun Bai & Nejc Bezak & Klaudija Sapač & Mateja Klun & Jin Zhang, 2019. "Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4783-4797, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhao Wu & Zhaocai Wang & Yuan Hu & Sen Tao & Jinghan Dong, 2023. "Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 937-953, January.
    2. Wen-chuan Wang & Yu-jin Du & Kwok-wing Chau & Dong-mei Xu & Chang-jun Liu & Qiang Ma, 2021. "An Ensemble Hybrid Forecasting Model for Annual Runoff Based on Sample Entropy, Secondary Decomposition, and Long Short-Term Memory Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4695-4726, November.
    3. Sangita Dey & Arabin Kumar Dey & Rajesh Kumar Mall, 2021. "Modeling Long-term Groundwater Levels By Exploring Deep Bidirectional Long Short-Term Memory using Hydro-climatic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3395-3410, August.
    4. Ming Zhong & Hongrui Zhang & Tao Jiang & Jun Guo & Jinxin Zhu & Dagang Wang & Xiaohong Chen, 2023. "A Hybrid Model Combining the Cama-Flood Model and Deep Learning Methods for Streamflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4841-4859, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun Bai & Nejc Bezak & Klaudija Sapač & Mateja Klun & Jin Zhang, 2019. "Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4783-4797, November.
    2. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    3. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    4. Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
    5. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    6. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    7. Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
    8. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Lin Qiu & Can-can Liu, 2017. "The Annual Maximum Flood Peak Discharge Forecasting Using Hermite Projection Pursuit Regression with SSO and LS Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 461-477, January.
    9. Xinxin He & Jungang Luo & Ganggang Zuo & Jiancang Xie, 2019. "Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1571-1590, March.
    10. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    11. Liangxu Liu & Xueyong Zhao & Qinglan Meng & He Zhao & Xiaoqian Lu & Junkai Gao & Xueli Chang, 2017. "Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    12. Yani Lian & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "Climate-driven Model Based on Long Short-Term Memory and Bayesian Optimization for Multi-day-ahead Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 21-37, January.
    13. Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
    14. Ali Danandeh Mehr & Vahid Nourani, 2018. "Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2665-2679, June.
    15. Fu Qiao, 2020. "Study on Price Fluctuation of Industry Index in Chinas Stock Market Based on Empirical Mode Decomposition," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 10(5), pages 559-573, May.
    16. Parisa-Sadat Ashofteh & Taher Rajaee & Parvin Golfam, 2017. "Assessment of Water Resources Development Projects under Conditions of Climate Change Using Efficiency Indexes (EIs)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3723-3744, September.
    17. Ervin Shan Khai Tiu & Yuk Feng Huang & Jing Lin Ng & Nouar AlDahoul & Ali Najah Ahmed & Ahmed Elshafie, 2022. "An evaluation of various data pre-processing techniques with machine learning models for water level prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 121-153, January.
    18. Anthony Mouraud, 2017. "Innovative time series forecasting: auto regressive moving average vs deep networks," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 4(3), pages 282-293, March.
    19. Zhong-kai Feng & Wen-jing Niu & Zhi-qiang Jiang & Hui Qin & Zhen-guo Song, 2020. "Monthly Operation Optimization of Cascade Hydropower Reservoirs with Dynamic Programming and Latin Hypercube Sampling for Dimensionality Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2029-2041, April.
    20. Fan, Xinying, 2022. "A method for the generation of typical meteorological year data using ensemble empirical mode decomposition for different climates of China and performance comparison analysis," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:4:d:10.1007_s11269-020-02759-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.