IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i1d10.1007_s11269-023-03667-x.html
   My bibliography  Save this article

A Framework for Algorithmic Improvement to Mitigate the Effects of Equifinality in the Calibration of High-dimensional Parameters for Hydrological Models

Author

Listed:
  • Xiaoyang Tang

    (Hohai University)

  • Deshan Tang

    (Hohai University)

  • Fulin Zhang

    (Hohai University)

Abstract

When performing hydrological model parameter calibration, equifinality inevitably reduces the simulation and prediction ability of hydrological models. To lessen the impact of equifinality, a novel algorithmic improvement framework is proposed in this paper. This framework allows the parameters to be searched hierarchically in order of sensitivity size and shrinks the original ranges of the parameters before the final search. The shuffled complex evolution (SCE_UA) algorithm, which is the most popular method for addressing hydrological model calibration issues, is improved using this new framework yielding HSRS_SCE algorithm, which stands for the SCE_UA algorithm with hierarchical search (HS) and range shrinkage (RS). A 26-dimensional parametric calibration problem is constructed and solved in this study utilizing 12 schemes based on the HSRS_SCE algorithm with various parameters and a control scheme based on the SCE_UA algorithm. The results show that the HSRS_SCE algorithm can not only produce calibrated parameter results significantly superior to those of the traditional scheme (p

Suggested Citation

  • Xiaoyang Tang & Deshan Tang & Fulin Zhang, 2024. "A Framework for Algorithmic Improvement to Mitigate the Effects of Equifinality in the Calibration of High-dimensional Parameters for Hydrological Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 251-267, January.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03667-x
    DOI: 10.1007/s11269-023-03667-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03667-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03667-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brij Kishor Pandey & Deepak Khare & Akiyuki Kawasaki & Prabhash K. Mishra, 2019. "Climate Change Impact Assessment on Blue and Green Water by Coupling of Representative CMIP5 Climate Models with Physical Based Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 141-158, January.
    2. Wenlin Yuan & Meiqi Liu & Fang Wan, 2019. "Calculation of Critical Rainfall for Small-Watershed Flash Floods Based on the HEC-HMS Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2555-2575, May.
    3. Taeuk Kang & Sangho Lee, 2014. "Modification of the SCE-UA to Include Constraints by Embedding an Adaptive Penalty Function and Application: Application Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2145-2159, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Yin & Chesheng Zhan & Wen Ye, 2016. "An Experimental Study on Evapotranspiration Data Assimilation Based on the Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5263-5279, November.
    2. Hairong Zhang & Jianzhong Zhou & Lei Ye & Xiaofan Zeng & Yufan Chen, 2015. "Lower Upper Bound Estimation Method Considering Symmetry for Construction of Prediction Intervals in Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5505-5519, December.
    3. Mona Ghafouri-Azar & Deg-Hyo Bae, 2019. "Analyzing the Variability in Low-Flow Projections under GCM CMIP5 Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5035-5050, December.
    4. Wei Wang & Jia Liu & Chuanzhe Li & Fuliang Yu & Yuebo Xie & Qingtai Qiu & Yufei Jiao & Guojuan Zhang, 2020. "Assessing the applicability of conceptual hydrological models for design flood estimation in small-scale watersheds of northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1135-1153, July.
    5. Swatantra Kumar Dubey & JungJin Kim & Younggu Her & Devesh Sharma & Hanseok Jeong, 2023. "Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review," Sustainability, MDPI, vol. 15(22), pages 1-40, November.
    6. Wen-Cheng Liu & Tien-Hsiang Hsieh & Hong-Ming Liu, 2021. "Flood Risk Assessment in Urban Areas of Southern Taiwan," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    7. Jan Niel & E. Uytven & P. Willems, 2019. "Uncertainty Analysis of Climate Change Impact on River Flow Extremes Based on a Large Multi-Model Ensemble," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4319-4333, September.
    8. Wei Zhang & Tian Li, 2015. "The Influence of Objective Function and Acceptability Threshold on Uncertainty Assessment of an Urban Drainage Hydraulic Model with Generalized Likelihood Uncertainty Estimation Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2059-2072, April.
    9. Jeewanthi Sirisena & Denie Augustijn & Aftab Nazeer & Janaka Bamunawala, 2022. "Use of Remote-Sensing-Based Global Products for Agricultural Drought Assessment in the Narmada Basin, India," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    10. Salwa Ramly & Wardah Tahir & Jazuri Abdullah & Janmaizatulriah Jani & Suzana Ramli & Arnis Asmat, 2020. "Flood Estimation for SMART Control Operation Using Integrated Radar Rainfall Input with the HEC-HMS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3113-3127, August.
    11. Shaohong Li & Peng Cui & Ping Cheng & Lizhou Wu, 2022. "Modified Green–Ampt Model Considering Vegetation Root Effect and Redistribution Characteristics for Slope Stability Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2395-2410, May.
    12. Adam P. Piotrowski & Marzena Osuch & Jarosław J. Napiorkowski, 2019. "Joint Optimization of Conceptual Rainfall-Runoff Model Parameters and Weights Attributed to Meteorological Stations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4509-4524, October.
    13. Maryam Abbaszadeh & Ommolbanin Bazrafshan & Rasool Mahdavi & Elham Rafiei Sardooi & Sajad Jamshidi, 2023. "Modeling Future Hydrological Characteristics Based on Land Use/Land Cover and Climate Changes Using the SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4177-4194, August.
    14. Muhammad Waseem Boota & Chaode Yan & Tanveer Abbas & Ziwei Li & Ming Dou & Ayesha Yousaf, 2021. "Comparative study of flash flood in ungauged watershed with special emphasizing on rough set theory for handling the missing hydrological values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1387-1405, November.
    15. Junchao Jiang & Leting Lyu & Yuechi Han & Caizhi Sun, 2021. "Effect of Climate Variability on Green and Blue Water Resources in a Temperate Monsoon Watershed, Northeastern China," Sustainability, MDPI, vol. 13(4), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03667-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.