IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i13d10.1007_s11269-023-03603-z.html
   My bibliography  Save this article

Modeling Hydrological Responses of Watershed Under Climate Change Scenarios Using Machine Learning Techniques

Author

Listed:
  • Keivan Karimizadeh

    (Ajou University)

  • Jaeeung Yi

    (Ajou University)

Abstract

Climate change is the most important problem of the earth in the current century. In this study, the effects of climate change on precipitation, temperature, wind speed, relative humidity and surface runoff in Saghez watershed in Iran investigated. The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN) model under the Shared Socio-economic Pathway scenarios (SSPs) using the Linear Scaling Bias Correction (LSBC) for the future period (2021–2050) compared to the base period (1985–2014). Additionally, MAE, MSE, RMSE and R2 indices used for model calibration and validation. The average projected precipitation was forecasted to decrease by 6.1%. In terms of the temperature, 1.4 Cº, and 1.6 Cº increases were predicted for minimum and maximum temperatures, respectively. Prediction of surface runoff using the SWAT model also illustrated that based on SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, runoff will decrease in the future period, which based on three mentioned scenarios is equals to 17.5%, 23.7% and 26.3% decrease, respectively. Furthermore, the assessment using the artificial neural network (ANN) also showed that the parameters of precipitation in the previous two days, wind speed and maximum relative humidity have the greatest effect on the watershed runoff. These findings may be helpful to reduce the impacts of climate change, and make the suitable long-term plans for management of the watersheds and water resources in the region.

Suggested Citation

  • Keivan Karimizadeh & Jaeeung Yi, 2023. "Modeling Hydrological Responses of Watershed Under Climate Change Scenarios Using Machine Learning Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(13), pages 5235-5254, October.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:13:d:10.1007_s11269-023-03603-z
    DOI: 10.1007/s11269-023-03603-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03603-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03603-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swati Maurya & Prashant K. Srivastava & Lu Zhuo & Aradhana Yaduvanshi & R. K. Mall, 2023. "Future Climate Change Impact on the Streamflow of Mahi River Basin Under Different General Circulation Model Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2675-2696, May.
    2. Zunaira Asif & Zhi Chen & Rehan Sadiq & Yinying Zhu, 2023. "Climate Change Impacts on Water Resources and Sustainable Water Management Strategies in North America," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2771-2786, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. P. Tsakiris & D. P. Loucks, 2023. "Adaptive Water Resources Management Under Climate Change: An Introduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2221-2233, May.
    2. Kornelia Przestrzelska & Katarzyna Wartalska & Weronika Rosińska & Jakub Jurasz & Bartosz Kaźmierczak, 2024. "Climate Resilient Cities: A Review of Blue-Green Solutions Worldwide," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5885-5910, December.
    3. Seung Taek Chae & Eun-Sung Chung & Jiping Jiang, 2024. "Enhancing Water Cycle Restoration through LID Practices Considering Climate Change: A Study on Permeable Pavement Planning by an Iterative MCDM Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3413-3428, July.
    4. Ran Ge & Yu Xia & Liquan Ge & Fei Li, 2025. "Knowledge Graph Analysis in Climate Action Research," Sustainability, MDPI, vol. 17(1), pages 1-30, January.
    5. Oznur Isinkaralar & Ayyoob Sharifi & Kaan Isinkaralar, 2024. "Assessing spatial thermal comfort and adaptation measures for the Antalya basin under climate change scenarios," Climatic Change, Springer, vol. 177(8), pages 1-17, August.
    6. Olaoluwa Oluwaniyi & Yong Zhang & Hossein Gholizadeh & Bailing Li & Xiufen Gu & HongGuang Sun & Chengpeng Lu, 2023. "Correlating Groundwater Storage Change and Precipitation in Alabama, United States from 2000–2021 by Combining the Water Table Fluctuation Method and Statistical Analyses," Sustainability, MDPI, vol. 15(21), pages 1-23, October.
    7. Koppuravuri Ramabrahmam & Venkata Reddy Keesara & Raghavan Srinivasan & Deva Pratap & Venkataramana Sridhar, 2023. "Climate Change Impact on Water Resources of Tank Cascade Systems in the Godavari Sub-Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2853-2873, May.
    8. Humayun Khan & Hadiqa Anum & Zeng Yan & Qi Chunjie, 2025. "Modernizing Rural Water Governance: A Systematic Review of Transitions, Dynamics, Influential Factors, and Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 979-997, February.
    9. Clara Estrela-Segrelles & Gabriel Gómez-Martínez & Miguel Ángel Pérez-Martín, 2023. "Climate Change Risks on Mediterranean River Ecosystems and Adaptation Measures (Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2757-2770, May.
    10. Xinyu Chang & Jun Guo & Hui Qin & Jingwei Huang & Xinying Wang & Pingan Ren, 2024. "Single-Objective and Multi-Objective Flood Interval Forecasting Considering Interval Fitting Coefficients," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3953-3972, August.
    11. Tayyeh, Halah Kadhim & Mohammed, Ruqayah, 2024. "Vulnerability and resilience of hydropower generation under climate change scenarios: Haditha dam reservoir case study," Applied Energy, Elsevier, vol. 366(C).
    12. Nuru Hasan & Raji Pushpalatha & V. S. Manivasagam & Sudha Arlikatti & Raj Cibin, 2023. "Global Sustainable Water Management: A Systematic Qualitative Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(13), pages 5255-5272, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:13:d:10.1007_s11269-023-03603-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.