IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15324-d1268142.html
   My bibliography  Save this article

Correlating Groundwater Storage Change and Precipitation in Alabama, United States from 2000–2021 by Combining the Water Table Fluctuation Method and Statistical Analyses

Author

Listed:
  • Olaoluwa Oluwaniyi

    (Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA)

  • Yong Zhang

    (Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA)

  • Hossein Gholizadeh

    (Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA)

  • Bailing Li

    (Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA)

  • Xiufen Gu

    (The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
    School of Mathematics and Information Science, Yantai University, Yantai 264005, China)

  • HongGuang Sun

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Chengpeng Lu

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

Abstract

The complexity of aquifers poses a challenge for fully comprehending the impact of climate change on groundwater. In this study, we employed a suite of hydrological and statistical methods, including the water table fluctuation (WTF) method, wavelet analysis, the Hurst exponent, and temporal trend analysis, to assess groundwater storage (GWS) changes and their correlation with precipitation in Alabama, located in the southeastern United States. These approaches were used to evaluate the temporal variability of GWS as derived from well data and large-scale model estimates that incorporated satellite observations. The results unveiled a nuanced and regionally variable relationship between GWS changes and precipitation over the past two decades. While the Mann–Kendall test did not reveal any statistically significant overarching trends in GWS changes, Sen’s slope analysis indicated subtle regional variations, including a minor decline of −0.2 mm/year for GWS in southern Alabama and modest increases of 0.5 mm/year and 0.38 mm/year in the western and northern regions, respectively, from 2000–2021. Wavelet coherence analysis showed significant co-variation between GWS and precipitation in cycles ranging from 8 to 32 months, suggesting potential cyclic or intermittent influences. Furthermore, we detected strong persistence within the groundwater system using the Hurst exponent, indicating the substantial temporal memory impact. These findings are useful for developing effective groundwater management strategies in a changing climate.

Suggested Citation

  • Olaoluwa Oluwaniyi & Yong Zhang & Hossein Gholizadeh & Bailing Li & Xiufen Gu & HongGuang Sun & Chengpeng Lu, 2023. "Correlating Groundwater Storage Change and Precipitation in Alabama, United States from 2000–2021 by Combining the Water Table Fluctuation Method and Statistical Analyses," Sustainability, MDPI, vol. 15(21), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15324-:d:1268142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. Richard G. Taylor & Bridget Scanlon & Petra Döll & Matt Rodell & Rens van Beek & Yoshihide Wada & Laurent Longuevergne & Marc Leblanc & James S. Famiglietti & Mike Edmunds & Leonard Konikow & Timothy , 2013. "Ground water and climate change," Nature Climate Change, Nature, vol. 3(4), pages 322-329, April.
    3. Zunaira Asif & Zhi Chen & Rehan Sadiq & Yinying Zhu, 2023. "Climate Change Impacts on Water Resources and Sustainable Water Management Strategies in North America," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2771-2786, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ran Ge & Yu Xia & Liquan Ge & Fei Li, 2025. "Knowledge Graph Analysis in Climate Action Research," Sustainability, MDPI, vol. 17(1), pages 1-30, January.
    2. Li, Zhijun & Fei, Jiangang & Du, Yuquan & Ong, Kok-Leong & Arisian, Sobhan, 2024. "A near real-time carbon accounting framework for the decarbonization of maritime transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    3. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    4. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    5. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    6. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    7. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    8. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    9. Yanrong Qiu & Kaihuai Liao & Yanting Zou & Gengzhi Huang, 2022. "A Bibliometric Analysis on Research Regarding Residential Segregation and Health Based on CiteSpace," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    10. Jinyi Li & Zhen Liu & Guizhong Han & Peter Demian & Mohamed Osmani, 2024. "The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities," Sustainability, MDPI, vol. 16(24), pages 1-38, December.
    11. Kornelia Przestrzelska & Katarzyna Wartalska & Weronika Rosińska & Jakub Jurasz & Bartosz Kaźmierczak, 2024. "Climate Resilient Cities: A Review of Blue-Green Solutions Worldwide," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5885-5910, December.
    12. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    13. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    14. Kai Hu & Huayi Wu & Kunlun Qi & Jingmin Yu & Siluo Yang & Tianxing Yu & Jie Zheng & Bo Liu, 2018. "A domain keyword analysis approach extending Term Frequency-Keyword Active Index with Google Word2Vec model," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1031-1068, March.
    15. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    16. Burmaoglu, Serhat & Sartenaer, Olivier & Porter, Alan, 2019. "Conceptual definition of technology emergence: A long journey from philosophy of science to science policy," Technology in Society, Elsevier, vol. 59(C).
    17. Francisco Díez-Martín & Giorgia Miotto & Cristina Del-Castillo-Feito, 2024. "The intellectual structure of gender equality research in the business economics literature," Review of Managerial Science, Springer, vol. 18(6), pages 1649-1680, June.
    18. Hyejin Park & Han Woo Park, 2018. "Two-side face of knowledge building using scientometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2815-2836, November.
    19. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    20. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15324-:d:1268142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.