IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i13d10.1007_s11269-022-03192-3.html
   My bibliography  Save this article

Developing Strategies for Agricultural Water Management of Large Irrigation and Drainage Networks with Fuzzy MCDM

Author

Listed:
  • Ahmad Radmehr

    (University of Tehran)

  • Omid Bozorg-Haddad

    (University of Tehran)

  • Hugo A. Loáiciga

    (University of California)

Abstract

Sustainable water resources management aims at increasing the efficient use of water and achieving food security. This work proposes a generalized novel spatial fuzzy strategic planning (SFSP) in combination with multi-criteria decision making (MCDM) and a conceptual agricultural water use model for determining sustainable agricultural water management strategies. The proposed framework is applied to an irrigation and drainage network in Iran, which constitutes a large-scale water resource system. A spatial strength, weakness, opportunity, and threat (SWOT) analysis of internal and external factors related to agricultural water management is applied in this work. Possible water management strategies were ranked with the MCDM approach that combines the Analytic Hierarchy Process (AHP) and the Fuzzy technique for order-preference by similarity to ideal solution (TOPSIS). The AHP estimates the criteria weights and the TOPSIS model prioritizes the agricultural water management strategies. The results of SWOT analysis show that the final scores of the internal and external factors are equal to 2.9 and 2.73, respectively. Accordingly, the most attractive strategic type is a SO (aggressive) strategy, and a combination of structural and non-structural strategies (SO, ST, and WO strategies) are the top-ranked ones. Proposed strategies for water supply and demand management are the development and rehabilitation of the physical structure of water resources system of irrigation network, improvement of operation management and maintenance of water resources system, wastewater management, and inter-basin water transfer within the irrigation network. The results indicate that the total annual volume of agricultural water under normal conditions is about 1.8 billion cubic meters, of which about 1707 million cubic meters (95%) issue from surface water sources and 90 million cubic meters (5%) from groundwater sources. The proposed model and the calculated results provide viable and effective solutions for the implementation of sustainable management of water resources and consumption in large-scale water resources systems.

Suggested Citation

  • Ahmad Radmehr & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2022. "Developing Strategies for Agricultural Water Management of Large Irrigation and Drainage Networks with Fuzzy MCDM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4885-4912, October.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03192-3
    DOI: 10.1007/s11269-022-03192-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03192-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03192-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Psomas & I. Vryzidis & A. Spyridakos & M. Mimikou, 2021. "MCDA approach for agricultural water management in the context of water–energy–land–food nexus," Operational Research, Springer, vol. 21(1), pages 689-723, March.
    2. Rouillard, Josselin & Rinaudo, Jean-Daniel, 2020. "From State to user-based water allocations: An empirical analysis of institutions developed by agricultural user associations in France," Agricultural Water Management, Elsevier, vol. 239(C).
    3. A. Alamanos & D. Latinopoulos & A. Loukas & N. Mylopoulos, 2020. "Comparing Two Hydro-Economic Approaches for Multi-Objective Agricultural Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4511-4526, November.
    4. Kajanus, Miika & Leskinen, Pekka & Kurttila, Mikko & Kangas, Jyrki, 2012. "Making use of MCDS methods in SWOT analysis—Lessons learnt in strategic natural resources management," Forest Policy and Economics, Elsevier, vol. 20(C), pages 1-9.
    5. Babaeian, Fariba & Delavar, Majid & Morid, Saeed & Srinivasan, Raghavan, 2021. "Robust climate change adaptation pathways in agricultural water management," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Tapos Kumar Acharjee & Petra Hellegers & Fulco Ludwig & Gerardo Halsema & Md. Abdul Mojid & Catharien Terwisscha Scheltinga, 2020. "Prioritization of adaptation measures for improved agricultural water management in Northwest Bangladesh," Climatic Change, Springer, vol. 163(1), pages 431-450, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walaa El-Nashar & Ahmed Elyamany, 2023. "Adapting Irrigation Strategies to Mitigate Climate Change Impacts: A Value Engineering Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2369-2386, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    2. Zhang, Cheng-Yao & Oki, Taikan, 2023. "Water pricing reform for sustainable water resources management in China’s agricultural sector," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
    4. Angelos Alamanos & Phoebe Koundouri, 2022. "Economics of Incorporating Ecosystem Services into Water Resource Planning and Management," DEOS Working Papers 2211, Athens University of Economics and Business.
    5. Yizhong Chen & Hongwei Lu & Jing Li & Pengdong Yan & He Peng, 2021. "Multi-Level Decision-Making for Inter-Regional Water Resources Management with Water Footprint Analysis and Shared Socioeconomic Pathways," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 481-503, January.
    6. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    7. Ali Azarnivand & Arash Malekian, 2016. "Analysis of Flood Risk Management Strategies Based on a Group Decision Making Process via Interval-Valued Intuitionistic Fuzzy Numbers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1903-1921, April.
    8. N. Englezos & X. Kartala & P. Koundouri & M. Tsionas & A. Alamanos, 2023. "A Novel HydroEconomic - Econometric Approach for Integrated Transboundary Water Management Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 975-1030, April.
    9. Chanthawong, Anuman & Dhakal, Shobhakar, 2016. "Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand," Energy Policy, Elsevier, vol. 91(C), pages 189-206.
    10. Maddalena Floris & Vittorio Gazale & Federica Isola & Francesca Leccis & Salvatore Pinna & Cheti Pira, 2020. "The Contribution of Ecosystem Services in Developing Effective and Sustainable Management Practices in Marine Protected Areas. The Case Study of “Isola dell’Asinara”," Sustainability, MDPI, vol. 12(3), pages 1-32, February.
    11. Živan Živković & Djordje Nikolić & Marija Savić & Predrag Djordjević & Ivan Mihajlović, 2017. "Prioritizing Strategic Goals in Higher Education Organizations by Using a SWOT–PROMETHEE/GAIA–GDSS Model," Group Decision and Negotiation, Springer, vol. 26(4), pages 829-846, July.
    12. Marta Bottero & Elena Comino & Federico Dell’Anna & Laura Dominici & Maurizio Rosso, 2019. "Strategic Assessment and Economic Evaluation: The Case Study of Yanzhou Island (China)," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    13. Huber, P. & Hujala, T. & Kurttila, M. & Wolfslehner, B. & Vacik, H., 2019. "Application of multi criteria analysis methods for a participatory assessment of non-wood forest products in two European case studies," Forest Policy and Economics, Elsevier, vol. 103(C), pages 103-111.
    14. Rishma Chengot & Jerry W. Knox & Ian P. Holman, 2021. "Evaluating the Feasibility of Water Sharing as a Drought Risk Management Tool for Irrigated Agriculture," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    15. Grima, Nelson & Singh, Simron J. & Smetschka, Barbara, 2018. "Improving payments for ecosystem services (PES) outcomes through the use of Multi-Criteria Evaluation (MCE) and the software OPTamos," Ecosystem Services, Elsevier, vol. 29(PA), pages 47-55.
    16. José Antonio, Palomero-González & Vicent, Almenar-Llongo & Ramón, Fuentes-Pascual, 2022. "A composite indicator index as a proxy for measuring the quality of water supply as perceived by users for urban water services," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    17. Ali Azarnivand & Mohammad Ebrahim Banihabib, 2017. "A Multi-level Strategic Group Decision Making for Understanding and Analysis of Sustainable Watershed Planning in Response to Environmental Perplexities," Group Decision and Negotiation, Springer, vol. 26(3), pages 629-648, May.
    18. Shakoor Shahabi, Reza & Basiri, Mohammad Hossein & Rashidi Kahag, Mahdi & Ahangar Zonouzi, Samad, 2014. "An ANP–SWOT approach for interdependency analysis and prioritizing the Iran׳s steel scrap industry strategies," Resources Policy, Elsevier, vol. 42(C), pages 18-26.
    19. Phoebe Koundouri & Angelos Alamanos & Kostas Dellis & Artemis Stratopoulou, 2022. "Ecosystem Services into Water Resource Planning and Management," DEOS Working Papers 2230, Athens University of Economics and Business.
    20. Mauro Berta & Marta Bottero & Valentina Ferretti, 2018. "A mixed methods approach for the integration of urban design and economic evaluation: Industrial heritage and urban regeneration in China," Environment and Planning B, , vol. 45(2), pages 208-232, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03192-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.