IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i8d10.1007_s11269-021-02855-x.html
   My bibliography  Save this article

Optimizing the Runoff Estimation with HEC-HMS Model Using Spatial Evapotranspiration by the SEBS Model

Author

Listed:
  • Maryam Zare

    (University of Hormozgan)

  • Mojtaba Pakparvar

    (Fars Agricultural and Natural Resources Research and Education Center, AREEO)

  • Sajad Jamshidi

    (Purdue University)

  • Omolbanin Bazrafshan

    (University of Hormozgan)

  • Gholamreza Ghahari

    (Fars Agricultural and Natural Resources Research and Education Center, AREEO)

Abstract

Most of the commonly used hydrological models do not account for the actual evapotranspiration (ETa) as a key contributor to water loss in semi-arid/arid regions. In this study, the HEC-HMS (Hydrologic Engineering Center Hydrologic Modeling System) model was calibrated, modified, and its performance in simulating runoff resulting from short-duration rainfall events was evaluated. The model modifications included integrating spatially distributed ETa, calculated using the surface energy balance system (SEBS), into the model. Evaluating the model’s performance in simulating runoff showed that the default HEC-HMS model underestimated the runoff with root mean squared error (RMSE) of 0.14 m3/s (R2 = 0.92) while incorporating SEBS ETa into the model reduced RMSE to 0.01 m3/s (R2 = 0.99). The integration of HECHMS and SEBS resulted in smaller and more realistic latent heat flux estimates translated into a lower water loss rate and a higher magnitude of runoff simulated by the HECHMS model. The difference between runoff simulations using the default and modified model translated into an average of 95,000 m3 runoff per rainfall event (equal to seasonal water requirement of ten-hectare winter wheat) that could be planned and triggered for agricultural purposes, flood harvesting, and groundwater recharge in the region. The effect of ETa on the simulated runoff volume is expected to be more pronounced during high evaporative demand periods, longer rainfall events, and larger catchments. The outcome of this study signifies the importance of implementing accurate estimates of evapotranspiration into a hydrological model.

Suggested Citation

  • Maryam Zare & Mojtaba Pakparvar & Sajad Jamshidi & Omolbanin Bazrafshan & Gholamreza Ghahari, 2021. "Optimizing the Runoff Estimation with HEC-HMS Model Using Spatial Evapotranspiration by the SEBS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2633-2648, June.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02855-x
    DOI: 10.1007/s11269-021-02855-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02855-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02855-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamshidi, Sajad & Zand-Parsa, Shahrokh & Kamgar-Haghighi, Ali Akbar & Shahsavar, Ali Reza & Niyogi, Dev, 2020. "Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Mohamed Elhag & Aris Psilovikos & Ioannis Manakos & Kostas Perakis, 2011. "Application of the Sebs Water Balance Model in Estimating Daily Evapotranspiration and Evaporative Fraction from Remote Sensing Data Over the Nile Delta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2731-2742, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueqin Jiang & Shanjun Luo & Qin Ye & Xican Li & Weihua Jiao, 2022. "Hyperspectral Estimates of Soil Moisture Content Incorporating Harmonic Indicators and Machine Learning," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    2. Taheri, Mercedeh & Emadzadeh, Maryam & Gholizadeh, Mohsen & Tajrishi, Masoud & Ahmadi, Mehdi & Moradi, Melika, 2019. "Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 782-791.
    3. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    4. Jafari, Mohammad & Kamali, Hamidreza & Keshavarz, Ali & Momeni, Akbar, 2021. "Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate," Agricultural Water Management, Elsevier, vol. 248(C).
    5. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    6. Teixeira, Antônio & Leivas, Janice & Struiving, Tiago & Reis, João & Simão, Fúlvio, 2021. "Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images," Agricultural Water Management, Elsevier, vol. 247(C).
    7. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    8. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Ali Rahimikhoob & Mohsen Hosseinzadeh, 2014. "Assessment of Blaney-Criddle Equation for Calculating Reference Evapotranspiration with NOAA/AVHRR Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3365-3375, August.
    11. Huanhuan Peng & Jinran Xiong & Jiayi Zhang & Linghui Zhu & Guiyan Wang & Steven Pacenka & Xiaolin Yang, 2023. "Water Requirements and Comprehensive Benefit Evaluation of Diversified Crop Rotations in the Huang-Huai Plain," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    12. Feng, Jiaojiao & Wang, Weizhen & Che, Tao & Xu, Feinan, 2023. "Performance of the improved two-source energy balance model for estimating evapotranspiration over the heterogeneous surface," Agricultural Water Management, Elsevier, vol. 278(C).
    13. Elnmer, Ayat & Khadr, Mosaad & Kanae, Shinjiro & Tawfik, Ahmed, 2019. "Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta," Agricultural Water Management, Elsevier, vol. 213(C), pages 682-692.
    14. Mohamed Elhag, 2014. "Sensitivity analysis assessment of remotely based vegetation indices to improve water resources management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(6), pages 1209-1222, December.
    15. C. Santos & I. Lorite & R. Allen & M. Tasumi, 2012. "Aerodynamic Parameterization of the Satellite-Based Energy Balance (METRIC) Model for ET Estimation in Rainfed Olive Orchards of Andalusia, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3267-3283, September.
    16. Bazrafshan, Ommolbanin & Ehteram, Mohammad & Moshizi, Zahra Gerkaninezhad & Jamshidi, Sajad, 2022. "Evaluation and uncertainty assessment of wheat yield prediction by multilayer perceptron model with bayesian and copula bayesian approaches," Agricultural Water Management, Elsevier, vol. 273(C).
    17. Parsinejad, Masoud & Raja, Omid & Chehrenegar, Behdad, 2022. "Practical analysis of remote sensing estimations of water use for major crops throughout the Urmia Lake basin," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Mohamed Elhag & Jarbou A. Bahrawi, 2019. "Sedimentation mapping in shallow shoreline of arid environments using active remote sensing data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 879-894, November.
    19. Hou, Panpan & Chen, Dianyu & Wei, Xuehui & Hu, Xiaotao & Duan, Xingwu & Zhang, Jingying & Qiu, Lucheng & Zhang, Linlin, 2023. "Transpiration characteristics and environmental controls of orange orchards in the dry-hot valley region of southwest China," Agricultural Water Management, Elsevier, vol. 288(C).
    20. Jinjiao Lian & Mingbin Huang, 2015. "Evapotranspiration Estimation for an Oasis Area in the Heihe River Basin Using Landsat-8 Images and the METRIC Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5157-5170, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02855-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.