Reservoir Inflow Prediction: A Comparison between Semi Distributed Numerical and Artificial Neural Network Modelling
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-023-03646-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiaoli Zhang & Haixia Wang & Anbang Peng & Wenchuan Wang & Baojian Li & Xudong Huang, 2020. "Quantifying the Uncertainties in Data-Driven Models for Reservoir Inflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1479-1493, March.
- Mohammad Babaei & Ramtin Moeini & Eghbal Ehsanzadeh, 2019. "Artificial Neural Network and Support Vector Machine Models for Inflow Prediction of Dam Reservoir (Case Study: Zayandehroud Dam Reservoir)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2203-2218, April.
- Sooyeon Yi & G. Mathias Kondolf & Samuel Sandoval-Solis & Larry Dale, 2022. "Application of Machine Learning-based Energy Use Forecasting for Inter-basin Water Transfer Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5675-5694, November.
- Laleh Parviz & Kabir Rasouli & Ali Torabi Haghighi, 2023. "Improving Hybrid Models for Precipitation Forecasting by Combining Nonlinear Machine Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3833-3855, August.
- Maryam Zare & Mojtaba Pakparvar & Sajad Jamshidi & Omolbanin Bazrafshan & Gholamreza Ghahari, 2021. "Optimizing the Runoff Estimation with HEC-HMS Model Using Spatial Evapotranspiration by the SEBS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2633-2648, June.
- Omid Bozorg-Haddad & Pouria Yari & Mohammad Delpasand & Xuefeng Chu, 2022. "Reservoir operation under influence of the joint uncertainty of inflow and evaporation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2914-2940, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ramtin Moeini & Kamran Nasiri & Seyed Hossein Hosseini, 2024. "Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4137-4159, September.
- Radha S. Mohril & Avinash D. Vasudeo, 2025. "Exploring Runoff Response to Simulated Rainfall: A Study of the Rising Limb of a Hydrograph on Sandy Slopes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(7), pages 3199-3212, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sarmad Dashti Latif & Ali Najah Ahmed & Edlic Sathiamurthy & Yuk Feng Huang & Ahmed El-Shafie, 2021. "Evaluation of deep learning algorithm for inflow forecasting: a case study of Durian Tunggal Reservoir, Peninsular Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 351-369, October.
- Dolon Banerjee & Sayantan Ganguly & Shashwat Kushwaha, 2024. "Forecasting Future Groundwater Recharge from Rainfall Under Different Climate Change Scenarios Using Comparative Analysis of Deep Learning and Ensemble Learning Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4019-4037, September.
- Mona Nemati & Mahmoud Mohammad Rezapour Tabari & Seyed Abbas Hosseini & Saman Javadi, 2021. "A Novel Approach Using Hybrid Fuzzy Vertex Method-MATLAB Framework Based on GMS Model for Quantifying Predictive Uncertainty Associated with Groundwater Flow and Transport Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4189-4215, September.
- Tuantuan Zhang & Zhongmin Liang & Chenglin Bi & Jun Wang & Yiming Hu & Binquan Li, 2025. "Statistical Post-Processing for Precipitation Forecast Through Deep Learning Coupling Large-Scale and Local-Scale Spatiotemporal Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 145-160, January.
- Carmen Calvo-Olivera & Ángel Manuel Guerrero-Higueras & Jesús Lorenzana & Eduardo García-Ortega, 2024. "Real-Time Evaluation of the Uncertainty in Weather Forecasts Through Machine Learning-Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(7), pages 2455-2470, May.
- Mahdi Valikhan Anaraki & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2021. "Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 199-223, January.
- Sarah Di Grande & Mariaelena Berlotti & Salvatore Cavalieri & Roberto Gueli, 2024. "A Machine Learning Approach to Forecasting Hydropower Generation," Energies, MDPI, vol. 17(20), pages 1-22, October.
- Ramtin Moeini & Kamran Nasiri & Seyed Hossein Hosseini, 2024. "Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4137-4159, September.
- Hossien Riahi-Madvar & Majid Dehghani & Rasoul Memarzadeh & Bahram Gharabaghi, 2021. "Short to Long-Term Forecasting of River Flows by Heuristic Optimization Algorithms Hybridized with ANFIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1149-1166, March.
- Youngje Choi & Jungwon Ji & Eunkyung Lee & Sunmi Lee & Sooyeon Yi & Jaeeung Yi, 2023. "Developing Optimal Reservoir Rule Curve for Hydropower Reservoir with an add-on Water Supply Function Using Improved Grey Wolf Optimizer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2063-2082, March.
- S. Khorram & N. Jehbez, 2023. "A Hybrid CNN-LSTM Approach for Monthly Reservoir Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4097-4121, August.
- Sarmad Dashti Latif & Ali Najah Ahmed, 2024. "Ensuring a generalizable machine learning model for forecasting reservoir inflow in Kurdistan region of Iraq and Australia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12513-12544, May.
More about this item
Keywords
Reservoir Inflow; Rainfall; Artificial Neural Networks (ANNs); HEC-HMS;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:15:d:10.1007_s11269-023-03646-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.