IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i5d10.1007_s10668-023-03885-8.html
   My bibliography  Save this article

Ensuring a generalizable machine learning model for forecasting reservoir inflow in Kurdistan region of Iraq and Australia

Author

Listed:
  • Sarmad Dashti Latif

    (Soran University
    Komar University of Science and Technology)

  • Ali Najah Ahmed

    (Universiti Tenaga Nasional (UNITEN)
    Universiti Tenaga Nasional (UNITEN))

Abstract

Correct inflow prediction is a critical non-engineering measure for ensuring flood control and increasing water supply efficiency. In addition, accurate inflow prediction can offer reservoir planning and management guidance since inflow is the major input into reservoirs. This study aims at generalizing a machine learning model for forecasting reservoir inflow. Daily, weekly, and monthly inflow and rainfall time-series data have been collected as two hydrological parameters to forecast reservoir inflow using a machine learning method, namely, support vector regression (SVR). Four different SVR kernels have been applied in this study. The kernels are radial basis function (RBF), linear, normalized polynomial, and sigmoid. Two scenarios for input selection have been implemented. Dokan dam in Kurdistan region of Iraq and Warragamba Dam in Australia were selected as the case studies for this research. For the purpose of generalization, the proposed models have been applied to two countries with a different climate condition. The findings showed that daily timescale outperformed weekly and monthly, while RBF outperformed the other SVR kernels with root-mean-square error (RMSE) = 145.7 and coefficient of determination (R2) = 0.85 for forecasting daily inflow at Dokan dam. However, RBF kernel could not perform well for forecasting daily inflow in Warragamba dam. The results showed that the proposed machine learning model performed well at Kurdistan region of Iraq only, while the result for Australia was not accurate. Therefore, the proposed models could not be generalized.

Suggested Citation

  • Sarmad Dashti Latif & Ali Najah Ahmed, 2024. "Ensuring a generalizable machine learning model for forecasting reservoir inflow in Kurdistan region of Iraq and Australia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12513-12544, May.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03885-8
    DOI: 10.1007/s10668-023-03885-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03885-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03885-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xingsheng Shu & Wei Ding & Yong Peng & Ziru Wang & Jian Wu & Min Li, 2021. "Monthly Streamflow Forecasting Using Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5089-5104, December.
    2. Vivien Lai & Ali Najah Ahmed & M.A. Malek & Haitham Abdulmohsin Afan & Rusul Khaleel Ibrahim & Ahmed El-Shafie & Amr El-Shafie, 2019. "Modeling the Nonlinearity of Sea Level Oscillations in the Malaysian Coastal Areas Using Machine Learning Algorithms," Sustainability, MDPI, vol. 11(17), pages 1-26, August.
    3. Mohammad Babaei & Ramtin Moeini & Eghbal Ehsanzadeh, 2019. "Artificial Neural Network and Support Vector Machine Models for Inflow Prediction of Dam Reservoir (Case Study: Zayandehroud Dam Reservoir)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2203-2218, April.
    4. Bin Xu & Xin Huang & Ping-an Zhong & Yenan Wu, 2020. "Two-Phase Risk Hedging Rules for Informing Conservation of Flood Resources in Reservoir Operation Considering Inflow Forecast Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2731-2752, July.
    5. Sarmad Dashti Latif & Ali Najah Ahmed & Edlic Sathiamurthy & Yuk Feng Huang & Ahmed El-Shafie, 2021. "Evaluation of deep learning algorithm for inflow forecasting: a case study of Durian Tunggal Reservoir, Peninsular Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 351-369, October.
    6. Yutao Qi & Zhanao Zhou & Lingling Yang & Yining Quan & Qiguang Miao, 2019. "A Decomposition-Ensemble Learning Model Based on LSTM Neural Network for Daily Reservoir Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4123-4139, September.
    7. Mohammad Ehteram & Vijay P Singh & Ahmad Ferdowsi & Sayed Farhad Mousavi & Saeed Farzin & Hojat Karami & Nuruol Syuhadaa Mohd & Haitham Abdulmohsin Afan & Sai Hin Lai & Ozgur Kisi & M A Malek & Ali Na, 2019. "An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "Streamflow Prediction Utilizing Deep Learning and Machine Learning Algorithms for Sustainable Water Supply Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3227-3241, June.
    2. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    3. Sheng He & Xuefeng Sang & Junxian Yin & Yang Zheng & Heting Chen, 2023. "Short-term Runoff Prediction Optimization Method Based on BGRU-BP and BLSTM-BP Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 747-768, January.
    4. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    5. Jenq-Tzong Shiau & Hsu-Hui Wen & I-Wen Su, 2021. "Comparing Optimal Hedging Policies Incorporating Past Operation Information and Future Hydrologic Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2177-2196, May.
    6. Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.
    7. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    8. Weibing Jia & Yubin Zhang & Zhengying Wei & Zhenhao Zheng & Peijun Xie, 2023. "Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-25, April.
    9. Zhenyu Mu & Xueshan Ai & Jie Ding & Kui Huang & Senlin Chen & Jiajun Guo & Zuo Dong, 2022. "Risk Analysis of Dynamic Water Level Setting of Reservoir in Flood Season Based on Multi-index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3067-3086, July.
    10. Armin Mahmoodi & Leila Hashemi & Milad Jasemi & Soroush Mehraban & Jeremy Laliberté & Richard C. Millar, 2023. "A developed stock price forecasting model using support vector machine combined with metaheuristic algorithms," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 59-86, March.
    11. Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
    12. Sarmad Dashti Latif & Ali Najah Ahmed & Edlic Sathiamurthy & Yuk Feng Huang & Ahmed El-Shafie, 2021. "Evaluation of deep learning algorithm for inflow forecasting: a case study of Durian Tunggal Reservoir, Peninsular Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 351-369, October.
    13. Xin Yang & Jianzhong Zhou & Qianyi Zhang & Zhanxin Xu & Jianyun Zhang, 2024. "Evaluation and Interpretation of Runoff Forecasting Models Based on Hybrid Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 1987-2013, April.
    14. Khabat Khosravi & Ali Golkarian & John P. Tiefenbacher, 2022. "Using Optimized Deep Learning to Predict Daily Streamflow: A Comparison to Common Machine Learning Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 699-716, January.
    15. Shunqing Jia & Xihua Wang & Y. Jun Xu & Zejun Liu & Boyang Mao, 2024. "A New Data-Driven Model to Predict Monthly Runoff at Watershed Scale: Insights from Deep Learning Method Applied in Data-Driven Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 5179-5194, October.
    16. Stefenon, Stefano Frizzo & Seman, Laio Oriel & da Silva, Evandro Cardozo & Finardi, Erlon Cristian & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Hypertuned wavelet convolutional neural network with long short-term memory for time series forecasting in hydroelectric power plants," Energy, Elsevier, vol. 313(C).
    17. Mostaghimzadeh, Ehsan & Adib, Arash & Ashrafi, Seyed Mohammad & Kisi, Ozgur, 2022. "Investigation of a composite two-phase hedging rule policy for a multi reservoir system using streamflow forecast," Agricultural Water Management, Elsevier, vol. 265(C).
    18. Ramtin Moeini & Kamran Nasiri & Seyed Hossein Hosseini, 2024. "Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4137-4159, September.
    19. Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
    20. Shu, Xingsheng & Ding, Wei & Peng, Yong & Wang, Ziru, 2024. "Value of long-term inflow forecast for hydropower operation: A case study in a low forecast precision region," Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03885-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.