IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v260y2022ics0378377421005096.html
   My bibliography  Save this article

Practical analysis of remote sensing estimations of water use for major crops throughout the Urmia Lake basin

Author

Listed:
  • Parsinejad, Masoud
  • Raja, Omid
  • Chehrenegar, Behdad

Abstract

Remote sensing techniques are used to estimate the high spatial and temporal hydrological variable of evapotranspiration. This is certainly considered a step forward, compared to alternate point measurements. It is important, however, to properly interpret these estimations to practical information for water managers. In this study, results of two separate remote sensing studies (FAO-IHE and RSRC) on estimation of actual evapotranspiration for major crops in the Urmia Lake basin were compared with widely accepted theoretical estimations of corresponding Irrigation Requirements (IR) using CROPWAT. CROPWAT estimations represent the irrigation requirements of crops under no stress, whereas RS techniques are used to estimate actual crop water use which may be under nonideal growing situations. Comparison of irrigation requirements and actual water use for different crops at various locations within the Urmia Lake basin can provide practical information on the status of field water managements, i.e., sufficiency of applied irrigation. Such analysis provides grounds for possible improvement on water management in a highly competitive water used region. The RS crop water estimations results were crosschecked with CROPWAT estimations of irrigation requirements, as the reference range, using ground data adopted from 21 scattered synoptic weather stations across the basin, representing the widely variable crop-water demand in the region and corresponding effective precipitations. FAO-IHE used the SEBAL and RSRC used the METRIC algorithm to produce ETa maps. The available land-use maps with 30-m by 30-m pixels were used for designation of the type of field crops. RSRC maps were produced using 1-km by 1-km daily satellite images. At this scale, a mixed combination of crops occurs in one pixel. To provide a more realistic comparison, the relative area of each crop cited from the land use maps was used to compare the ETa estimates by RSRC with the weighted average of irrigation requirements. The results showed the actual water use estimated from remote sensing images were generally higher than Irrigation Requirements. The difference can be attributed to overirrigation which is a common practice in the region. RS estimated actual crop-water use in rainfed lands was also compared with temporal local precipitations. In some areas, actual crop-water use in rainfed lands was more than the corresponding effective precipitation estimates. This observation cannot practically be justified and can be drawback in the preparation of land-use maps. Practical conclusions were drawn from comparison of actual crop-water use and theoretical estimates. Locations of possible over-/under-irrigation were identified, for which improved water management can provide means for saving water for the restoration of the desiccating Urmia Lake. The feasibility and versatility of RS techniques have motivated researchers to increase adoption of this method, provided that the uncertainties can be resolved.

Suggested Citation

  • Parsinejad, Masoud & Raja, Omid & Chehrenegar, Behdad, 2022. "Practical analysis of remote sensing estimations of water use for major crops throughout the Urmia Lake basin," Agricultural Water Management, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005096
    DOI: 10.1016/j.agwat.2021.107232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421005096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taheri, Mercedeh & Emadzadeh, Maryam & Gholizadeh, Mohsen & Tajrishi, Masoud & Ahmadi, Mehdi & Moradi, Melika, 2019. "Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 782-791.
    2. Moseki, Ofentse & Murray-Hudson, Michael & Kashe, Keotshephile, 2019. "Crop water and irrigation requirements of Jatropha curcas L. in semi-arid conditions of Botswana: applying the CROPWAT model," Agricultural Water Management, Elsevier, vol. 225(C).
    3. Elnmer, Ayat & Khadr, Mosaad & Kanae, Shinjiro & Tawfik, Ahmed, 2019. "Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta," Agricultural Water Management, Elsevier, vol. 213(C), pages 682-692.
    4. de Oliveira Costa, Jéfferson & José, Jefferson Vieira & Wolff, Wagner & de Oliveira, Niclene Ponce Rodrigues & Oliveira, Rafaella Conceição & Ribeiro, Nathália Lopes & Coelho, Rubens Duarte & da Silva, 2020. "Spatial variability quantification of maize water consumption based on Google EEflux tool," Agricultural Water Management, Elsevier, vol. 232(C).
    5. Mohamed Elhag & Aris Psilovikos & Ioannis Manakos & Kostas Perakis, 2011. "Application of the Sebs Water Balance Model in Estimating Daily Evapotranspiration and Evaporative Fraction from Remote Sensing Data Over the Nile Delta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2731-2742, September.
    6. Mhawej, Mario & Elias, Georgie & Nasrallah, Ali & Faour, Ghaleb, 2020. "Dynamic calibration for better SEBALI ET estimations: Validations and recommendations," Agricultural Water Management, Elsevier, vol. 230(C).
    7. Mohammad Dastorani & Samaneh Poormohammadi, 2012. "Evaluation of Water Balance in a Mountainous Upland Catchment Using SEBAL Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2069-2080, May.
    8. Tavakkoli, Ali Reza & Oweis, Theib Y., 2004. "The role of supplemental irrigation and nitrogen in producing bread wheat in the highlands of Iran," Agricultural Water Management, Elsevier, vol. 65(3), pages 225-236, March.
    9. Tasumi, Masahiro, 2019. "Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin," Agricultural Water Management, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingshui Lu & Kaikun Jing & Xuepeng Li & Xinzhi Song & Cong Zhao & Shunxiang Du, 2023. "Effects of Yellow River Water Management Policies on Annual Irrigation Water Usage from Canals and Groundwater in Yucheng City, China," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    2. Rangaswamy Madugundu & Khalid A. Al-Gaadi & ElKamil Tola & Salah El-Hendawy & Samy A. Marey, 2023. "Mapping of Evapotranspiration and Determination of the Water Footprint of a Potato Crop Grown in Hyper-Arid Regions in Saudi Arabia," Sustainability, MDPI, vol. 15(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Barideh, Rahman & Nasimi, Fereshteh, 2022. "Investigating the changes in agricultural land use and actual evapotranspiration of the Urmia Lake basin based on FAO’s WaPOR database," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Jinjiao Lian & Mingbin Huang, 2015. "Evapotranspiration Estimation for an Oasis Area in the Heihe River Basin Using Landsat-8 Images and the METRIC Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5157-5170, November.
    4. Cunha, Angélica Carvalho & Filho, Luís Roberto Almeida Gabriel & Tanaka, Adriana Aki & Goes, Bruno Cesar & Putti, Fernando Ferrari, 2021. "Influence Of The Estimated Global Solar Radiation On The Reference Evapotranspiration Obtained Through The Penman-Monteith Fao 56 Method," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    6. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    7. Taheri, Mercedeh & Emadzadeh, Maryam & Gholizadeh, Mohsen & Tajrishi, Masoud & Ahmadi, Mehdi & Moradi, Melika, 2019. "Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 782-791.
    8. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    9. Mhawej, Mario & Nasrallah, Ali & Abunnasr, Yaser & Fadel, Ali & Faour, Ghaleb, 2021. "Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    11. Wei, Jun & Cui, Yuanlai & Zhou, Sihang & Luo, Yufeng, 2022. "Regional water-saving potential calculation method for paddy rice based on remote sensing," Agricultural Water Management, Elsevier, vol. 267(C).
    12. Ilbeyi, Adem & Ustun, Haluk & Oweis, Theib & Pala, Mustafa & Benli, Bogachan, 2006. "Wheat water productivity and yield in a cool highland environment: Effect of early sowing with supplemental irrigation," Agricultural Water Management, Elsevier, vol. 82(3), pages 399-410, April.
    13. Benli, B. & Pala, M. & Stockle, C. & Oweis, T., 2007. "Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 45-53, October.
    14. Sabzchi-Dehkharghani, Hamed & Nazemi, Amir Hossein & Sadraddini, Ali Ashraf & Majnooni-Heris, Abolfazl & Biswas, Asim, 2021. "Recognition of different yield potentials among rain-fed wheat fields before harvest using remote sensing," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Karrou, M. & Oweis, T., 2012. "Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 94-103.
    16. Lima, Carlos Eduardo Santos de & Costa, Valéria Sandra de Oliveira & Galvíncio, Josiclêda Domiciano & Silva, Richarde Marques da & Santos, Celso Augusto Guimarães, 2021. "Assessment of automated evapotranspiration estimates obtained using the GP-SEBAL algorithm for dry forest vegetation (Caatinga) and agricultural areas in the Brazilian semiarid region," Agricultural Water Management, Elsevier, vol. 250(C).
    17. Teixeira, Antônio & Leivas, Janice & Struiving, Tiago & Reis, João & Simão, Fúlvio, 2021. "Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images," Agricultural Water Management, Elsevier, vol. 247(C).
    18. Zheng Wang & Yue Huang & Tie Liu & Chanjuan Zan & Yunan Ling & Chenyu Guo, 2022. "Analysis of the Water Demand-Supply Gap and Scarcity Index in Lower Amu Darya River Basin, Central Asia," IJERPH, MDPI, vol. 19(2), pages 1-18, January.
    19. Fouad H. Saeed & Mahmoud S. Al-Khafaji & Furat A. Mahmood Al-Faraj, 2021. "Sensitivity of Irrigation Water Requirement to Climate Change in Arid and Semi-Arid Regions towards Sustainable Management of Water Resources," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    20. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.