IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i6d10.1007_s11269-020-02541-4.html
   My bibliography  Save this article

Flow-Based Optimal System Design of Urban Water Transmission Network under Seismic Conditions

Author

Listed:
  • Sungsik Yoon

    (Korea Advanced Institute of Science and Technology)

  • Young-Joo Lee

    (Ulsan National Institute of Science and Technology)

  • Hyung-Jo Jung

    (Korea Advanced Institute of Science and Technology)

Abstract

In this paper, an optimal system design for the seismic performance enhancement of a water transmission network was proposed. The main purpose of the optimal design is to maximize the system performance within a limited construction cost. The proposed model evaluates network performance through the spatially correlated seismic attenuation law, determination of the failure status of the network facility, and numerical modeling of water networks. For hydraulic simulation, a MATLAB computer code was developed to enable the EPANET program with pressure-driven analysis. To demonstrate the proposed model, an actual water transmission network of A-city, South Korea was adopted, and a water network map was constructed based on the geographic information system data. Numerical results showed that the optimized network model increased system serviceability and nodal serviceability by 9.9% and 11%, respectively, and the average nodal pressure of the network increased by 3.6 m compared to existing models. In addition, the result of the optimal pipeline design was utilized to compare the performance against interdependencies and the elapsed time of pipelines. The optimized network exhibited higher performance than the existing network, depending on the elapsed time and interdependence. Therefore, to maximize the performance of the water network, it is necessary to use optimized network design parameters according to the appropriate construction budget.

Suggested Citation

  • Sungsik Yoon & Young-Joo Lee & Hyung-Jo Jung, 2020. "Flow-Based Optimal System Design of Urban Water Transmission Network under Seismic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1971-1990, April.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:6:d:10.1007_s11269-020-02541-4
    DOI: 10.1007/s11269-020-02541-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02541-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02541-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michalis Fragiadakis & Symeon Christodoulou & Dimitrios Vamvatsikos, 2013. "Reliability Assessment of Urban Water Distribution Networks Under Seismic Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3739-3764, August.
    2. Symeon Christodoulou & Alexandra Deligianni, 2010. "A Neurofuzzy Decision Framework for the Management of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 139-156, January.
    3. Symeon Christodoulou, 2011. "Water Network Assessment and Reliability Analysis by Use of Survival Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1229-1238, March.
    4. Suwan Park & Chang Choi & Jeong Kim & Cheol Bae, 2010. "Evaluating the Economic Residual Life of Water Pipes Using the Proportional Hazards Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3195-3217, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohong Wang & Yongtu Liang & Wei Zhao & Yun Shen & Meng Yuan & Zhimin Li & Jian Guo, 2021. "A Continuous Pump Location Optimization Method for Water Pipe Network Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 447-464, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agathoklis Agathokleous & Chrystalleni Christodoulou & Symeon E. Christodoulou, 2017. "Topological Robustness and Vulnerability Assessment of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4007-4021, September.
    2. Michalis Fragiadakis & Symeon Christodoulou & Dimitrios Vamvatsikos, 2013. "Reliability Assessment of Urban Water Distribution Networks Under Seismic Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3739-3764, August.
    3. Symeon Christodoulou & Anastasis Gagatsis & Savvas Xanthos & Sofia Kranioti & Agathoklis Agathokleous & Michalis Fragiadakis, 2013. "Entropy-Based Sensor Placement Optimization for Waterloss Detection in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4443-4468, October.
    4. Marek Teichmann & Dagmar Kuta & Stanislav Endel & Natalie Szeligova, 2020. "Modeling and Optimization of the Drinking Water Supply Network—A System Case Study from the Czech Republic," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    5. Symeon E. Christodoulou & Elena Kourti & Agathoklis Agathokleous, 2017. "Waterloss Detection in Water Distribution Networks using Wavelet Change-Point Detection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 979-994, February.
    6. Alessandro Pagano & Raffaele Giordano & Ivan Portoghese & Umberto Fratino & Michele Vurro, 2014. "A Bayesian vulnerability assessment tool for drinking water mains under extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2193-2227, December.
    7. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Sungsik Yoon & Young-Joo Lee & Hyung-Jo Jung, 2021. "Flow-based seismic risk assessment of a water transmission network employing probabilistic seismic hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1231-1254, January.
    9. Zahra Pouri & Morteza Heidarimozaffar, 2022. "Spatial Analysis and Failure Management in Water Distribution Networks Using Fuzzy Inference System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1783-1797, April.
    10. Hao, Zhifeng & Yeh, Wei-Chang & Tan, Shi-Yi, 2021. "One-batch preempt deterioration-effect multi-state multi-rework network reliability problem and algorithms," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Alicia Robles-Velasco & Cristóbal Ramos-Salgado & Jesús Muñuzuri & Pablo Cortés, 2021. "Artificial Neural Networks to Forecast Failures in Water Supply Pipes," Sustainability, MDPI, vol. 13(15), pages 1-10, July.
    12. M. Fontana & D. Morais, 2013. "Using Promethee V to Select Alternatives so as to Rehabilitate Water Supply Network with Detected Leaks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4021-4037, September.
    13. Jiajia Wu & Donghui Ma & Wei Wang & Zhao Han, 2020. "Research on Sensor Placement for Disaster Prevention in Water Distribution Networks for Important Users," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
    14. Chrianna I Bharat & Kevin Murray & Edward Cripps & Melinda R Hodkiewicz, 2018. "Methods for displaying and calibration of Cox proportional hazards models," Journal of Risk and Reliability, , vol. 232(1), pages 105-115, February.
    15. Qiang Xu & Qiuwen Chen & Jinfeng Ma & Koen Blanckaert & Zhonghua Wan, 2014. "Water Saving and Energy Reduction through Pressure Management in Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3715-3726, September.
    16. Agathoklis Agathokleous & Symeon Christodoulou, 2016. "Vulnerability of Urban Water Distribution Networks under Intermittent Water Supply Operations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4731-4750, October.
    17. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    18. Jorge Pinto & Humberto Varum & Isabel Bentes & Jitendra Agarwal, 2010. "A Theory of Vulnerability of Water Pipe Network (TVWPN)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4237-4254, December.
    19. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    20. Stavroula Tsitsifli & Vasilis Kanakoudis & Ioannis Bakouros, 2011. "Pipe Networks Risk Assessment Based on Survival Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3729-3746, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:6:d:10.1007_s11269-020-02541-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.