IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i7p2125-2137.html
   My bibliography  Save this article

Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: Framework Development and Case Study

Author

Listed:
  • Fei Li
  • Huan-Feng Duan
  • Hexiang Yan
  • Tao Tao

Abstract

Detention tank plays an important role in the flooding control in the downstream areas of the urban stormwater drainage system (USDS) during the wet weather seasons. For complex watersheds with specific local flooding control policies, the conventional optimization and design methods are found to be not sufficient for effectively and optimally locating and sizing appropriate detention tanks any more. This paper investigates the optimal design of detention tanks under the constraints of local flooding control criteria, with the aim to develop an efficient and robust method and framework for the design of detention tank network. Coupled with the SWMM-based hydraulic simulation, a modified particle swarm optimizer is adopted to find out non-dominated solutions to minimize both the engineering cost and flooding risks by taking the local design criteria into consideration for the more realistic local engineering application. To validate the proposed method, a real-life case in SA city in China is taken for example to obtain optimal layout and sizes of the detention tank network under different construction factors and design conditions. Different rainfall return periods are also tested to guarantee the robustness of the optimal solutions. The results of this study confirm the feasibility and validity of the proposed methodological framework for multi-objective optimal design of detention tanks in the USDS. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Fei Li & Huan-Feng Duan & Hexiang Yan & Tao Tao, 2015. "Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: Framework Development and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2125-2137, May.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:7:p:2125-2137
    DOI: 10.1007/s11269-015-0931-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-0931-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-0931-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yue-Ping Xu & Yeou-Koung Tung, 2008. "Decision-making in Water Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(5), pages 535-550, May.
    2. Helena Ramos & Charlotte Teyssier & P. López-Jiménez, 2013. "Optimization of Retention Ponds to Improve the Drainage System Elasticity for Water-Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2889-2901, June.
    3. Feng Sun & Zhongshan Yang & Zhenfang Huang, 2014. "Challenges and Solutions of Urban Hydrology in Beijing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3377-3389, September.
    4. Robert Oxley & Larry Mays, 2014. "Optimization – Simulation Model for Detention Basin System Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1157-1171, March.
    5. Chih-Hua Chang & Ching-Gung Wen & Chih-Sheng Lee, 2008. "Use of Intercepted Runoff Depth for Stormwater Runoff Management in Industrial Parks in Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1609-1623, November.
    6. Xingqi Zhang & Maochuan Hu, 2014. "Effectiveness of Rainwater Harvesting in Runoff Volume Reduction in a Planned Industrial Park, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 671-682, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omid Seyedashraf & Andrea Bottacin-Busolin & Julien J. Harou, 2021. "Many-Objective Optimization of Sustainable Drainage Systems in Urban Areas with Different Surface Slopes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2449-2464, June.
    2. Wen Zhang & Jing Li & Yunhao Chen & Yang Li, 2019. "A Surrogate-Based Optimization Design and Uncertainty Analysis for Urban Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4201-4214, September.
    3. V. Daksiya & H. T. Su & Y. H. Chang & Edmond Y. M. Lo, 2017. "Incorporating socio-economic effects and uncertain rainfall in flood mitigation decision using MCDA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 515-531, May.
    4. Husnain Tansar & Huan-Feng Duan & Ole Mark, 2022. "Catchment-Scale and Local-Scale Based Evaluation of LID Effectiveness on Urban Drainage System Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 507-526, January.
    5. Fei Li & Xu-Feng Yan & Huan-Feng Duan, 2019. "Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3271-3288, July.
    6. Li Liu & Xing Li & Gaoyuan Xia & Juliang Jin & Guowei Chen, 2016. "Spatial fuzzy clustering approach to characterize flood risk in urban storm water drainage systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1469-1483, September.
    7. Huan-Feng Duan & Fei Li & Hexiang Yan, 2016. "Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4635-4648, October.
    8. Lei Yao & Liding Chen & Wei Wei, 2017. "Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China," IJERPH, MDPI, vol. 14(3), pages 1-16, February.
    9. Huan-Feng Duan & Xichao Gao, 2019. "Flooding Control and Hydro-Energy Assessment for Urban Stormwater Drainage Systems under Climate Change: Framework Development and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3523-3545, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huan-Feng Duan & Fei Li & Hexiang Yan, 2016. "Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4635-4648, October.
    2. Alireza B. Dariane & M. M. Javadianzadeh & L. Douglas James, 2016. "Developing an Efficient Auto-Calibration Algorithm for HEC-HMS Program," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1923-1937, April.
    3. Wen Zhang & Jing Li & Yunhao Chen & Yang Li, 2019. "A Surrogate-Based Optimization Design and Uncertainty Analysis for Urban Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4201-4214, September.
    4. Iman Saeedi & Mohsen Goodarzi, 2020. "Rainwater harvesting system: a sustainable method for landscape development in semiarid regions, the case of Malayer University campus in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1579-1598, February.
    5. Chidozie Charles Nnaji & Nkpa Mba Ogarekpe & Ekene Jude Nwankwo, 2022. "Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9598-9622, July.
    6. Nicola Isendahl & Art Dewulf & Marcela Brugnach & Greet François & Sabine Möllenkamp & Claudia Pahl-Wostl, 2009. "Assessing Framing of Uncertainties in Water Management Practice," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3191-3205, December.
    7. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    9. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    10. Julio Berbel & Julia Martin-Ortega & Pascual Mesa, 2011. "A Cost-Effectiveness Analysis of Water-Saving Measures for the Water Framework Directive: the Case of the Guadalquivir River Basin in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 623-640, January.
    11. P. Londra & A. Theocharis & E. Baltas & V. Tsihrintzis, 2015. "Optimal Sizing of Rainwater Harvesting Tanks for Domestic Use in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4357-4377, September.
    12. Javier Guerrero & Taufiqul Alam & Ahmed Mahmoud & Kim D. Jones & Andrew Ernest, 2020. "Decision-Support System for LID Footprint Planning and Urban Runoff Mitigation in the Lower Rio Grande Valley of South Texas," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    13. Imad Antoine Ibrahim, 2020. "Legal Implications of the Use of Big Data in the Transboundary Water Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1139-1153, February.
    14. Yohannes Hagos Subagadis & Niels Schütze & Jens Grundmann, 2016. "A Fuzzy-Stochastic Modeling Approach for Multiple Criteria Decision Analysis of Coupled Groundwater-Agricultural Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2075-2095, April.
    15. Hsin-Ting SU & Yeou-Koung Tung, 2014. "Comparisons of Risk-based Decision Rules for the Application of Water Resources Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3921-3935, September.
    16. Liang Zhang & Sisi Li & Hugo A. Loáiciga & Yanhua Zhuang & Yun Du, 2015. "Opportunities and challenges of interbasin water transfers: a literature review with bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 279-294, October.
    17. Juana Moiwo & Fulu Tao, 2014. "Evidence of Land-use Controlled Water Storage Depletion in Hai River Basin, North China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4733-4746, October.
    18. Xingqi Zhang & Xinya Guo & Maochuan Hu, 2016. "Hydrological effect of typical low impact development approaches in a residential district," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 389-400, January.
    19. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    20. Konstantinos Kostarelos & Eakalak Khan & Nazzareno Callipo & Jennifer Velasquez & Dave Graves, 2011. "Field Study of Catch Basin Inserts for the Removal of Pollutants from Urban Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1205-1217, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:7:p:2125-2137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.