IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i8d10.1007_s11269-018-1950-4.html
   My bibliography  Save this article

Analysis and Modelling of Stormwater Volume Control Performance of Rainwater Harvesting Systems in Four Climatic Zones of China

Author

Listed:
  • Xueer Jing

    (Beijing Forestry University)

  • Shouhong Zhang

    (Beijing Forestry University)

  • Jianjun Zhang

    (Beijing Forestry University)

  • Yujie Wang

    (Beijing Forestry University)

  • Yunqi Wang

    (Beijing Forestry University)

  • Tongjia Yue

    (Beijing Forestry University)

Abstract

Rainwater harvesting has been widely used to alleviate urban water scarcity and waterlogging problems. In this study, a water balance model is developed to continuously simulate the long-term (57 to 65 years) stormwater capture efficiency of rainwater harvesting systems for three water demand scenarios at four cities across four climatic zones of China. The impacts of the “yield after spillage” (YAS) and “yield before spillage” (YBS) operating algorithms, climatic conditions, and storage and demand fractions on stormwater capture efficiency of rainwater harvesting systems are analyzed. The YAS algorithm, compared with the YBS, results in more conservative estimations of stormwater capture efficiency of rainwater harvesting systems with relatively small storage tanks (e.g., ≤50 m3). The difference between stormwater capture efficiency calculated using the YBS and YAS algorithms can be remedied by increasing storage capacity and reduced by decreasing water demand rates. Higher stormwater capture efficiency can be achieved for rainwater harvesting systems with higher storage and demand fractions and located in regions with less rainfall. However, the lager variations in annual rainfall in arid zones may lead to unstable stormwater management performance of rainwater harvesting systems. The impacts of storage and demand fractions on stormwater capture efficiency of rainwater harvesting systems are interactive and dependent on climatic conditions. Based on the relationships among storage capacity, contributing area, water demand, and stormwater capture efficiency of rainwater harvesting systems, easy-to-use equations are proposed for the hydrologic design of rainwater harvesting systems to meet specific stormwater control requirements at the four cities.

Suggested Citation

  • Xueer Jing & Shouhong Zhang & Jianjun Zhang & Yujie Wang & Yunqi Wang & Tongjia Yue, 2018. "Analysis and Modelling of Stormwater Volume Control Performance of Rainwater Harvesting Systems in Four Climatic Zones of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2649-2664, June.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:8:d:10.1007_s11269-018-1950-4
    DOI: 10.1007/s11269-018-1950-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1950-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1950-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olanike Aladenola & Adrian Cashman & Douglas Brown, 2016. "Impact of El Niño and Climate Change on Rainwater Harvesting in a Caribbean State," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3459-3473, August.
    2. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    3. P. Londra & A. Theocharis & E. Baltas & V. Tsihrintzis, 2015. "Optimal Sizing of Rainwater Harvesting Tanks for Domestic Use in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4357-4377, September.
    4. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    5. Jun-Hyun Kim & Hwan Yong Kim & Fabiana Demarie, 2017. "Facilitators and Barriers of Applying Low Impact Development Practices in Urban Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3795-3808, September.
    6. Chidozie Charles Nnaji & PraiseGod Chidozie Emenike & Imokhai Theophilus Tenebe, 2017. "An Optimization Approach for Assessing the Reliability of Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 2011-2024, April.
    7. Xingqi Zhang & Maochuan Hu, 2014. "Effectiveness of Rainwater Harvesting in Runoff Volume Reduction in a Planned Industrial Park, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 671-682, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nandi, Santosh & Gonela, Vinay, 2022. "Rainwater harvesting for domestic use: A systematic review and outlook from the utility policy and management perspectives," Utilities Policy, Elsevier, vol. 77(C).
    2. Anna Palla & Ilaria Gnecco, 2022. "On the Effectiveness of Domestic Rainwater Harvesting Systems to Support Urban Flood Resilience," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5897-5914, December.
    3. Katya Coelho & João Almeida & Fernando Castro & André Ribeiro & Tiago Teixeira & Paulo Palha & Nuno Simões, 2022. "Experimental Characterisation of Different Ecological Substrates for Use in Green Roof Systems," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    4. Sara Lopes Souto & Ricardo Prado Abreu Reis & Marcus André Siqueira Campos, 2023. "Impact of Installing Rainwater Harvesting System on Urban Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 583-600, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    2. Monzur A. Imteaz & Hassaan Ahmad & Iqbal Hossain, 2023. "Pioneer Use of Pseudo Sub-Daily Timestep Model for Rainwater Harvesting Analysis: Acceptance over Hourly Model and Exploring Accuracy of Different Operating Algorithms," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    3. Abdul Salam Khan, 2023. "A Comparative Analysis of Rainwater Harvesting System and Conventional Sources of Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2083-2106, March.
    4. Gabriela Cristina Ribeiro Pacheco & Marcus André Siqueira Campos, 2019. "Real Options Analysis as an Economic Evaluation Method for Rainwater Harvesting Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4401-4415, September.
    5. Tong Chen & Mo Wang & Jin Su & Jianjun Li, 2023. "Unlocking the Positive Impact of Bio-Swales on Hydrology, Water Quality, and Biodiversity: A Bibliometric Review," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    6. Iman Saeedi & Mohsen Goodarzi, 2020. "Rainwater harvesting system: a sustainable method for landscape development in semiarid regions, the case of Malayer University campus in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1579-1598, February.
    7. Chidozie Charles Nnaji & Nkpa Mba Ogarekpe & Ekene Jude Nwankwo, 2022. "Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9598-9622, July.
    8. George Kyriakarakos & George Papadakis & Christos A. Karavitis, 2022. "Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
    9. Fei Li & Huan-Feng Duan & Hexiang Yan & Tao Tao, 2015. "Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: Framework Development and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2125-2137, May.
    10. Amjad Khan & Yoonkyung Park & Jongpyo Park & Reeho Kim, 2022. "Assessment of Rainwater Harvesting Facilities Tank Size Based on a Daily Water Balance Model: The Case of Korea," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    11. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    12. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "Low Impact Development Measures Spatial Arrangement for Urban Flood Mitigation: An Exploratory Optimal Framework based on Source Tracking," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3755-3770, September.
    13. P. Londra & A. Theocharis & E. Baltas & V. Tsihrintzis, 2015. "Optimal Sizing of Rainwater Harvesting Tanks for Domestic Use in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4357-4377, September.
    14. Javier Guerrero & Taufiqul Alam & Ahmed Mahmoud & Kim D. Jones & Andrew Ernest, 2020. "Decision-Support System for LID Footprint Planning and Urban Runoff Mitigation in the Lower Rio Grande Valley of South Texas," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    15. Diana Fiorillo & Francesco Paola & Giuseppe Ascione & Maurizio Giugni, 2023. "Drainage Systems Optimization Under Climate Change Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2465-2482, May.
    16. Huan-Feng Duan & Fei Li & Hexiang Yan, 2016. "Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4635-4648, October.
    17. Annah Ndeketeya & Morgan Dundu, 2023. "Urban Rainwater Harvesting Adoption Potential in a Socio-economically Diverse City Using a GIS-based Multi-criteria Decision Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 835-850, January.
    18. F. Paola & M. Giugni & F. Pugliese & P. Romano, 2018. "Optimal Design of LIDs in Urban Stormwater Systems Using a Harmony-Search Decision Support System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4933-4951, December.
    19. Xingqi Zhang & Xinya Guo & Maochuan Hu, 2016. "Hydrological effect of typical low impact development approaches in a residential district," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 389-400, January.
    20. Amirhossein Nazari & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2023. "Integrated SUSTAIN-SWMM-MCDM Approach for Optimal Selection of LID Practices in Urban Stormwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3769-3793, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:8:d:10.1007_s11269-018-1950-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.