IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i15p5749-5763.html
   My bibliography  Save this article

Measuring Spatio-temporal Trends in Residential Landscape Irrigation Extent and Rate in Los Angeles, California Using SPOT-5 Satellite Imagery

Author

Listed:
  • Ying-Jung Chen
  • Joseph McFadden
  • Keith Clarke
  • Dar Roberts

Abstract

Irrigation is a large component of urban water budgets in semi-arid regions and is critical for the management of landscape vegetation and water resources. This is particularly true for Mediterranean climate cities such as Los Angeles, where water availability is limited during dry summers. These interactions were examined by using 10-m resolution satellite imagery and a database of monthly water use records for all residential water customers in Los Angeles in order to map vegetation greenness, the extent and distribution of irrigated areas, and irrigation rates. A water conservation ratio between rates of irrigation and vegetation water demand was calculated to assess over-irrigation. The analyses were conducted for the water years (WY) 2005–2007, which included wet, average, and dry extremes of annual rainfall. Although outdoor water usage was highest in the dry year, vegetation greenness could not be maintained as well as in wetter years, suggesting that lower greenness was due to water stress. However, annual rainfall from WY 2005 to 2007 did not significantly influence the variability in the magnitude and spatial pattern of irrigation, with mean irrigated rates ranging only from 81 to 86 mm. The water conservation ratio showed that 7 % of the postal carrier routes across the city were over-irrigated in the dry year, but 43 % were over-irrigated in the wet year. This was largely because the climatic demand for water by vegetation decreased in wet years, but irrigation rates changed little from year-to-year. This overwatering can be addressed by water conservation, planning and public education, especially in the current California drought. The approach demonstrated here should be transferable to other cities in semi-arid climates. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Ying-Jung Chen & Joseph McFadden & Keith Clarke & Dar Roberts, 2015. "Measuring Spatio-temporal Trends in Residential Landscape Irrigation Extent and Rate in Los Angeles, California Using SPOT-5 Satellite Imagery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5749-5763, December.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:15:p:5749-5763
    DOI: 10.1007/s11269-015-1144-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1144-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1144-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward Gage & David Cooper, 2015. "The Influence of Land Cover, Vertical Structure, and Socioeconomic Factors on Outdoor Water Use in a Western US City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3877-3890, August.
    2. Eisenstein, William & Kondolf, G. Mathias, 2008. "Planning Water Use in California," University of California Transportation Center, Working Papers qt1h2182p3, University of California Transportation Center.
    3. Elizabeth Wentz & Patricia Gober, 2007. "Determinants of Small-Area Water Consumption for the City of Phoenix, Arizona," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1849-1863, November.
    4. Vuolo, Francesco & D’Urso, Guido & De Michele, Carlo & Bianchi, Biagio & Cutting, Michael, 2015. "Satellite-based irrigation advisory services: A common tool for different experiences from Europe to Australia," Agricultural Water Management, Elsevier, vol. 147(C), pages 82-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    2. Patricia Gober & Ray Quay & Kelli L. Larson, 2016. "Outdoor Water Use as an Adaptation Problem: Insights from North American Cities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 899-912, February.
    3. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    4. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    5. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    6. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    7. Corbari, Chiara & Paciolla, Nicola & Rossi, Greta & Mancini, Marco, 2023. "A double two-sources energy-water balance model for improving evapotranspiration estimates and irrigation management in fruit trees fields," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    9. Nichols, Brice G. & Kockelman, Kara M., 2014. "Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and public infrastructure," Energy Policy, Elsevier, vol. 68(C), pages 232-242.
    10. Kelli L. Larson & Dave D. White & Patricia Gober & Amber Wutich, 2015. "Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation," Sustainability, MDPI, vol. 7(11), pages 1-24, November.
    11. Alessandra Santini & Antonella Di Fonzo & Elisa Giampietri & Andrea Martelli & Orlando Cimino & Anna Dalla Marta & Maria Carmela Annosi & Francisco José Blanco-Velázquez & Teresa Del Giudice & Filiber, 2023. "A Step toward Water Use Sustainability: Implementing a Business Model Canvas for Irrigation Advisory Services," Agriculture, MDPI, vol. 13(5), pages 1-13, May.
    12. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    13. Pelosi, A. & Medina, H. & Villani, P. & D’Urso, G. & Chirico, G.B., 2016. "Probabilistic forecasting of reference evapotranspiration with a limited area ensemble prediction system," Agricultural Water Management, Elsevier, vol. 178(C), pages 106-118.
    14. Negin Ashoori & David A. Dzombak & Mitchell J. Small, 2016. "Modeling the Effects of Conservation, Demographics, Price, and Climate on Urban Water Demand in Los Angeles, California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5247-5262, November.
    15. Chih-Hao Wang & Hongwei Dong, 2017. "Responding to the Drought: A Spatial Statistical Approach to Investigating Residential Water Consumption in Fresno, California," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    16. Sean Lyons & Joe O’Doherty & Richard Tol, 2010. "Determinants of Water Connection Type and Ownership of Water-Using Appliances in Ireland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2853-2867, September.
    17. Bich-Ngoc, Nguyen & Prevedello, Cédric & Cools, Mario & Teller, Jacques, 2022. "Factors influencing residential water consumption in Wallonia, Belgium," Utilities Policy, Elsevier, vol. 74(C).
    18. Nikoleta Jones & Konstantinos Evangelinos & Petros Gaganis & Eugenia Polyzou, 2011. "Citizens’ Perceptions on Water Conservation Policies and the Role of Social Capital," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 509-522, January.
    19. Brelsford, Christa & Abbott, Joshua K., 2017. "Growing into Water Conservation? Decomposing the Drivers of Reduced Water Consumption in Las Vegas, NV," Ecological Economics, Elsevier, vol. 133(C), pages 99-110.
    20. George P. Petropoulos & Prashant K. Srivastava & Maria Piles & Simon Pearson, 2018. "Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management," Sustainability, MDPI, vol. 10(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:15:p:5749-5763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.