IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i5p1219-1234.html
   My bibliography  Save this article

Groundwater Vulnerability Assessment and Feasibility Mapping Under Reclaimed Water Irrigation by a Modified DRASTIC Model

Author

Listed:
  • Wenyong Wu

    ()

  • Shiyang Yin
  • Honglu Liu
  • Honghan Chen

Abstract

Increasing water shortages promote reclaimed water irrigation (RWI), which potentially causes additional contaminants in groundwater. The DRASTIC model has become an important tool to assess specific groundwater vulnerability. In this study, five parameters of the model were kept to calculated intrinsic vulnerability index (IVI). Aquifer media rating is calculated using the weighted average of ratings for all mediums instead of using the major medium rating, and the rating of the impact of vadose zone is adjusted for the clayey soils on the basis of their thickness. Subsequently, a single parameter sensitivity analysis is used to compute the effective weights of those five parameters. The Pearson’s correlation coefficient between IVI and Nemerow’s synthetical pollution Index (NI) of groundwater quality is significantly improved from 0.185 to 0.775 after four steps of revision. The RWI factor, R rr , is introduced to assess specific vulnerability index (SVI) under RWI. The SVI decreases from east to west with the increases in depth to water, clayey soil thickness, and other factors. To manage contamination risk, the study area is divided into preferential zones, feasible zones and unfeasible zones for RWI planning and operation with suggested engineering measures. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Wenyong Wu & Shiyang Yin & Honglu Liu & Honghan Chen, 2014. "Groundwater Vulnerability Assessment and Feasibility Mapping Under Reclaimed Water Irrigation by a Modified DRASTIC Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1219-1234, March.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:5:p:1219-1234
    DOI: 10.1007/s11269-014-0536-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0536-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao Bao & Chuang-lin Fang, 2012. "Water Resources Flows Related to Urbanization in China: Challenges and Perspectives for Water Management and Urban Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 531-552, January.
    2. Rebecca Moody & Jacko Ast, 2012. "Implementation of GIS-Based Applications in Water Governance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 517-529, January.
    3. M. Chitsazan & Y. Akhtari, 2009. "A GIS-based DRASTIC Model for Assessing Aquifer Vulnerability in Kherran Plain, Khuzestan, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1137-1155, April.
    4. K. Papapetridis & E. Paleologos, 2012. "Sampling Frequency of Groundwater Monitoring and Remediation Delay at Contaminated Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2673-2688, July.
    5. Xiaosi Su & Huang Wang & Yuling Zhang, 2013. "Health Risk Assessment of Nitrate Contamination in Groundwater: A Case Study of an Agricultural Area in Northeast China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3025-3034, June.
    6. Fawen Li & Ping Feng & Wei Zhang & Ting Zhang, 2013. "An Integrated Groundwater Management Mode Based on Control Indexes of Groundwater Quantity and Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3273-3292, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longxia Qian & Ren Zhang & Mei Hong & Hongrui Wang & Lizhi Yang, 2016. "A new multiple integral model for water shortage risk assessment and its application in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 43-67, January.
    2. Longxia Qian & Ren Zhang & Mei Hong & Hongrui Wang & Lizhi Yang, 2016. "A new multiple integral model for water shortage risk assessment and its application in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 43-67, January.
    3. Ata Allah Nadiri & Maryam Gharekhani & Rahman Khatibi, 2018. "Mapping Aquifer Vulnerability Indices Using Artificial Intelligence-running Multiple Frameworks (AIMF) with Supervised and Unsupervised Learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3023-3040, July.
    4. Sina Sadeghfam & Yousef Hassanzadeh & Ata Allah Nadiri & Mahdi Zarghami, 2016. "Localization of Groundwater Vulnerability Assessment Using Catastrophe Theory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4585-4601, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:5:p:1219-1234. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.