IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i10p2999-3018.html
   My bibliography  Save this article

Development of Nonlinear Model Based on Wavelet-ANFIS for Rainfall Forecasting at Klang Gates Dam

Author

Listed:
  • Seyed Akrami
  • Vahid Nourani
  • S. Hakim

Abstract

Rainfall is one of the most complicated effective hydrologic processes in runoff prediction and water management. Artificial neural networks (ANN) have been found efficient, particularly in problems where characteristics of the processes are stochastic and difficult to describe using explicit mathematical models. However, time series prediction based on ANN algorithms is fundamentally difficult and faces some other problems. For this purpose, one method that has been identified as a possible alternative for ANN in hydrology and water resources problems is the adaptive neuro-fuzzy inference system (ANFIS). Nevertheless, the data arising from the monitoring stations and experiment might be corrupted by noise signals owing to systematic and non-systematic errors. This noisy data often made the prediction task relatively difficult. Thus, in order to compensate for this augmented noise, the primary objective of this paper is to develop a technique that could enhance the accuracy of rainfall prediction. Therefore, the wavelet decomposition method is proposed to link to ANFIS and ANN models. In this paper, two scenarios are employed; in the first scenario, monthly rainfall value is imposed solely as an input in different time delays from the time (t) to the time (t-4) into ANN and ANFIS, second scenario uses the wavelet transform to eliminate the error and prepares sub-series as inputs in different time delays to the ANN and ANFIS. The four criteria as Root Mean Square Error (RMSE), Correlation Coefficient (R 2 ), Gamma coefficient (G), and Spearman Correlation Coefficient (ρ) are used to evaluate the proposed models. The results showed that the model based on wavelet decomposition conjoined with ANFIS could perform better than the ANN and ANFIS models individually. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Seyed Akrami & Vahid Nourani & S. Hakim, 2014. "Development of Nonlinear Model Based on Wavelet-ANFIS for Rainfall Forecasting at Klang Gates Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2999-3018, August.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:10:p:2999-3018
    DOI: 10.1007/s11269-014-0651-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0651-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0651-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wensheng Wang & Juliang Jin & Yueqing Li, 2009. "Prediction of Inflow at Three Gorges Dam in Yangtze River with Wavelet Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2791-2803, October.
    2. Krishna Singh & Mahesh Pal & V. Singh, 2010. "Estimation of Mean Annual Flood in Indian Catchments Using Backpropagation Neural Network and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2007-2019, August.
    3. Mehdi Rezaeian Zadeh & Seifollah Amin & Davar Khalili & Vijay Singh, 2010. "Daily Outflow Prediction by Multi Layer Perceptron with Logistic Sigmoid and Tangent Sigmoid Activation Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2673-2688, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Ahmad Soleymani & Shidrokh Goudarzi & Mohammad Hossein Anisi & Wan Haslina Hassan & Mohd Yamani Idna Idris & Shahaboddin Shamshirband & Noorzaily Mohamed Noor & Ismail Ahmedy, 2016. "A Novel Method to Water Level Prediction using RBF and FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3265-3283, July.
    2. Sinan Jasim Hadi & Mustafa Tombul, 2018. "Forecasting Daily Streamflow for Basins with Different Physical Characteristics through Data-Driven Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3405-3422, August.
    3. Bulent Haznedar & Huseyin Cagan Kilinc, 2022. "A Hybrid ANFIS-GA Approach for Estimation of Hydrological Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4819-4842, September.
    4. Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.
    5. Vahid Nourani & Mohammad Taghi Sattari & Amir Molajou, 2017. "Threshold-Based Hybrid Data Mining Method for Long-Term Maximum Precipitation Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2645-2658, July.
    6. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    7. Quoc Bao Pham & S. I. Abba & Abdullahi Garba Usman & Nguyen Thi Thuy Linh & Vivek Gupta & Anurag Malik & Romulus Costache & Ngoc Duong Vo & Doan Quang Tri, 2019. "Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5067-5087, December.
    8. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuesong Zhang & Kaiguang Zhao, 2012. "Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2365-2382, June.
    2. Ozgur Kisi & Alireza Nia & Mohsen Gosheh & Mohammad Tajabadi & Azadeh Ahmadi, 2012. "Intermittent Streamflow Forecasting by Using Several Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 457-474, January.
    3. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    4. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    5. Rana Muhammad Adnan & Andrea Petroselli & Salim Heddam & Celso Augusto Guimarães Santos & Ozgur Kisi, 2021. "Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2987-3011, February.
    6. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    7. Ayoub Zeroual & Mohamed Meddi & Ali A. Assani, 2016. "Artificial Neural Network Rainfall-Discharge Model Assessment Under Rating Curve Uncertainty and Monthly Discharge Volume Predictions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3191-3205, July.
    8. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    9. Hirad Abghari & Hojjat Ahmadi & Sina Besharat & Vahid Rezaverdinejad, 2012. "Prediction of Daily Pan Evaporation using Wavelet Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3639-3652, September.
    10. Padam Jee Omar & Shishir Gaur & S. B. Dwivedi & P. K. S. Dikshit, 2020. "A Modular Three-Dimensional Scenario-Based Numerical Modelling of Groundwater Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1913-1932, April.
    11. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.
    12. Falamarzi, Yashar & Palizdan, Narges & Huang, Yuk Feng & Lee, Teang Shui, 2014. "Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs)," Agricultural Water Management, Elsevier, vol. 140(C), pages 26-36.
    13. Ozgur Kisi & Jalal Shiri, 2011. "Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3135-3152, October.
    14. Mohammad Dorofki & Ahmed Elshafie & Othman Jaafar & Othman Karim & Sharifah Abdullah, 2014. "A GIS-ANN-Based Approach for Enhancing the Effect of Slope in the Modified Green-Ampt Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 391-406, January.
    15. J. Drisya & D. Sathish Kumar & Thendiyath Roshni, 2021. "Hydrological drought assessment through streamflow forecasting using wavelet enabled artificial neural networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3653-3672, March.
    16. Huaizhi Su & Xiaoqun Yan & Hongping Liu & Zhiping Wen, 2017. "Integrated Multi-Level Control Value and Variation Trend Early-Warning Approach for Deformation Safety of Arch Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 2025-2045, April.
    17. Granata, Francesco, 2019. "Evapotranspiration evaluation models based on machine learning algorithms—A comparative study," Agricultural Water Management, Elsevier, vol. 217(C), pages 303-315.
    18. Jian Tang & Xin-An Yin & Pan Yang & ZhiFeng Yang, 2014. "Assessment of Contributions of Climatic Variation and Human Activities to Streamflow Changes in the Lancang River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2953-2966, August.
    19. Mahdi Valikhan Anaraki & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2021. "Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 199-223, January.
    20. Mustafa Turan & Mehmet Yurdusev, 2014. "Predicting Monthly River Flows by Genetic Fuzzy Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4685-4697, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:10:p:2999-3018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.