IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i15p5245-5260.html
   My bibliography  Save this article

Differential Evolution for Prediction of Longitudinal Dispersion Coefficients in Natural Streams

Author

Listed:
  • Xiangtao Li
  • Huawen Liu
  • Minghao Yin

Abstract

Differential evolution (DE) is a population-based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, a novel expression for the prediction of longitudinal dispersion coefficient in natural streams is proposed to minimize the sum-square error using differential evolution algorithm. The new expression considers the hydraulic and geometric characteristics of rivers. Datasets consisting 65 sets of observations from 29 rivers in the unite states are used to test the proposed algorithm, and results demonstrate the performance and applicability of the proposed differential evolution. Compared with the previous methods, the new expression using differential evolution is superior to other expressions. Moreover, 56.92 % of the prediction using the new expression lie with the 0.5 > K pre /K meas > 1.5 that is better than other expressions. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Xiangtao Li & Huawen Liu & Minghao Yin, 2013. "Differential Evolution for Prediction of Longitudinal Dispersion Coefficients in Natural Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5245-5260, December.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:15:p:5245-5260
    DOI: 10.1007/s11269-013-0465-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0465-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0465-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Vasan & Komaragiri Raju, 2007. "Application of Differential Evolution for Irrigation Planning: An Indian Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1393-1407, August.
    2. Hui Qin & Jianzhong Zhou & Youlin Lu & Yinghai Li & Yongchuan Zhang, 2010. "Multi-objective Cultured Differential Evolution for Generating Optimal Trade-offs in Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2611-2632, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossien Riahi-Madvar & Majid Dehghani & Akram Seifi & Vijay P. Singh, 2019. "Pareto Optimal Multigene Genetic Programming for Prediction of Longitudinal Dispersion Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 905-921, February.
    2. Mohamad Reza Madadi & Saeid Akbarifard & Kourosh Qaderi, 2020. "Performance Evaluation of Improved Symbiotic Organism Search Algorithm for Estimation of Solute Transport in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1453-1464, March.
    3. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    4. Mohamad Javad Alizadeh & Davoud Ahmadyar & Ali Afghantoloee, 2017. "Improvement on the Existing Equations for Predicting Longitudinal Dispersion Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1777-1794, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Arunkumar & V. Jothiprakash, 2013. "Chaotic Evolutionary Algorithms for Multi-Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5207-5222, December.
    2. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    3. Shuo Ouyang & Jianzhong Zhou & Chunlong Li & Xiang Liao & Hao Wang, 2015. "Optimal Design for Flood Limit Water Level of Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 445-457, January.
    4. Qingqing Li & Shuo Ouyang, 2015. "Research on multi-objective joint optimal flood control model for cascade reservoirs in river basin system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 2097-2115, July.
    5. Jianzhong Zhou & Shuo Ouyang & Xuemin Wang & Lei Ye & Hao Wang, 2014. "Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 767-783, February.
    6. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    7. Wenlin Yuan & Xueyan Yu & Chengguo Su & Denghua Yan & Zening Wu, 2020. "A Multi-Timescale Integrated Operation Model for Balancing Power Generation, Ecology, and Water Supply of Reservoir Operation," Energies, MDPI, vol. 14(1), pages 1-21, December.
    8. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    9. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.
    10. Yongqi Liu & Hui Qin & Li Mo & Yongqiang Wang & Duan Chen & Shusen Pang & Xingli Yin, 2019. "Hierarchical Flood Operation Rules Optimization Using Multi-Objective Cultured Evolutionary Algorithm Based on Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 337-354, January.
    11. Tan, Qiaofeng & Wen, Xin & Sun, Yuanliang & Lei, Xiaohui & Wang, Zhenni & Qin, Guanghua, 2021. "Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty," Applied Energy, Elsevier, vol. 285(C).
    12. Zhou, Jianzhong & Zhang, Yongchuan & Zhang, Rui & Ouyang, Shuo & Wang, Xuemin & Liao, Xiang, 2015. "Integrated optimization of hydroelectric energy in the upper and middle Yangtze River," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 481-512.
    13. Morteza Zargar & Hossein M. V. Samani & Ali Haghighi, 2016. "Optimization of gated spillways operation for flood risk management in multi-reservoir systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 299-320, May.
    14. Mansouri, R., 2018. "Economical Optimization of the Pressure Irrigation Networks by using Developed Central Force Optimization Algorithm," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275982, International Association of Agricultural Economists.
    15. Wenzhuo Wang & Benyou Jia & Slobodan P. Simonovic & Shiqiang Wu & Ziwu Fan & Li Ren, 2021. "Comparison of Representative Heuristic Algorithms for Multi-Objective Reservoir Optimal Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2741-2762, July.
    16. Iman Ahmadianfar & Arvin Samadi-Koucheksaraee & Omid Bozorg-Haddad, 2017. "Extracting Optimal Policies of Hydropower Multi-Reservoir Systems Utilizing Enhanced Differential Evolution Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4375-4397, November.
    17. Gift Dumedah, 2012. "Formulation of the Evolutionary-Based Data Assimilation, and its Implementation in Hydrological Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3853-3870, October.
    18. Dandan Zhang & Juqin Shen & Pengfei Liu & Qian Zhang & Fuhua Sun, 2020. "Use of Fuzzy Analytic Hierarchy Process and Environmental Gini Coefficient for Allocation of Regional Flood Drainage Rights," IJERPH, MDPI, vol. 17(6), pages 1-23, March.
    19. Jun Guo & Jianzhong Zhou & Qiang Zou & Yi Liu & Lixiang Song, 2013. "A Novel Multi-Objective Shuffled Complex Differential Evolution Algorithm with Application to Hydrological Model Parameter Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2923-2946, June.
    20. Dandan Zhang & Juqin Shen & Pengfei Liu & Fuhua Sun, 2020. "Allocation of Flood Drainage Rights Based on the PSR Model and Pythagoras Fuzzy TOPSIS Method," IJERPH, MDPI, vol. 17(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:15:p:5245-5260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.