IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i1d10.1007_s11269-018-2105-3.html
   My bibliography  Save this article

Hierarchical Flood Operation Rules Optimization Using Multi-Objective Cultured Evolutionary Algorithm Based on Decomposition

Author

Listed:
  • Yongqi Liu

    (Huazhong University of Science and Technology)

  • Hui Qin

    (Huazhong University of Science and Technology)

  • Li Mo

    (Huazhong University of Science and Technology)

  • Yongqiang Wang

    (Changjiang River Scientific Research Institute)

  • Duan Chen

    (Changjiang River Scientific Research Institute)

  • Shusen Pang

    (Three Gorges Cascade Dispatch and Communication Center)

  • Xingli Yin

    (Huazhong University of Science and Technology)

Abstract

The operation of a reservoir system for flood resources utilization is a complex problem as it involves many variables, a large number of constraints and multiple objectives. In this paper, a new algorithm named multi-objective cultured evolutionary algorithm based on decomposition (MOCEA/D) is proposed for optimizing the hierarchical flood operation rules (HFORs) with four objectives: upstream flood control, downstream flood control, power generation and navigation. The performance of MOCEA/D is validated through some well-known benchmark problems. On achieving satisfactory performance, MOCEA/D is applied to a case study of HFORs optimization for Three Gorges Project (TGP). The experimental results show that MOCEA/D obtains a uniform non-dominated schemes set. The optimized HFORs can improve the power generation and navigation rate as much as possible under the premise of ensuring flood control safety for small and medium floods (smaller than 1% frequency flood). The obtained results show that MOCEA/D can be a viable alternative for generating multi-objective HFORs for water resources planning and management.

Suggested Citation

  • Yongqi Liu & Hui Qin & Li Mo & Yongqiang Wang & Duan Chen & Shusen Pang & Xingli Yin, 2019. "Hierarchical Flood Operation Rules Optimization Using Multi-Objective Cultured Evolutionary Algorithm Based on Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 337-354, January.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2105-3
    DOI: 10.1007/s11269-018-2105-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2105-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2105-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    2. Hui Qin & Jianzhong Zhou & Youlin Lu & Yinghai Li & Yongchuan Zhang, 2010. "Multi-objective Cultured Differential Evolution for Generating Optimal Trade-offs in Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2611-2632, September.
    3. M. Reddy & D. Kumar, 2006. "Optimal Reservoir Operation Using Multi-Objective Evolutionary Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 861-878, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zitong Yang & Xianfeng Huang & Jiao Liu & Guohua Fang, 2021. "Optimal Operation of Floodwater Resources Utilization of Lakes in South-to-North Water Transfer Eastern Route Project," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    2. He, Zhongzheng & Zhou, Jianzhong & Xie, Mengfei & Jia, Benjun & Bao, Zhengfeng & Qin, Hui & Zhang, Hairong, 2019. "Study on guaranteed output constraints in the long term joint optimal scheduling for the hydropower station group," Energy, Elsevier, vol. 185(C), pages 1210-1224.
    3. He, Zhongzheng & Wang, Chao & Wang, Yongqiang & Wei, Bowen & Zhou, Jianzhong & Zhang, Hairong & Qin, Hui, 2021. "Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group," Energy, Elsevier, vol. 222(C).
    4. Quansen Wang & Jianzhong Zhou & Kangdi Huang & Ling Dai & Benjun Jia & Lu Chen & Hui Qin, 2021. "A Procedure for Combining Improved Correlated Sampling Methods and a Resampling Strategy to Generate a Multi-Site Conditioned Streamflow Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1011-1027, February.
    5. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    6. Yongqi Liu & Lei Ye & Hui Qin & Shuo Ouyang & Zhendong Zhang & Jianzhong Zhou, 2019. "Middle and Long-Term Runoff Probabilistic Forecasting Based on Gaussian Mixture Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1785-1799, March.
    7. Arya Yaghoubzadeh-Bavandpour & Omid Bozorg-Haddad & Mohammadreza Rajabi & Babak Zolghadr-Asli & Xuefeng Chu, 2022. "Application of Swarm Intelligence and Evolutionary Computation Algorithms for Optimal Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2275-2292, May.
    8. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Wang, Chao & Yu, Xiang & Jiang, Zhiqiang & Zhou, Jianzhong, 2019. "Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jianzhong & Zhang, Yongchuan & Zhang, Rui & Ouyang, Shuo & Wang, Xuemin & Liao, Xiang, 2015. "Integrated optimization of hydroelectric energy in the upper and middle Yangtze River," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 481-512.
    2. Fang-Fang Li & Jun Qiu, 2015. "Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power," Energies, MDPI, vol. 8(7), pages 1-15, July.
    3. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    4. Shuo Ouyang & Jianzhong Zhou & Chunlong Li & Xiang Liao & Hao Wang, 2015. "Optimal Design for Flood Limit Water Level of Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 445-457, January.
    5. Qingqing Li & Shuo Ouyang, 2015. "Research on multi-objective joint optimal flood control model for cascade reservoirs in river basin system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 2097-2115, July.
    6. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    7. Jianzhong Zhou & Shuo Ouyang & Xuemin Wang & Lei Ye & Hao Wang, 2014. "Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 767-783, February.
    8. M. Janga Reddy & S. Adarsh, 2010. "Chance Constrained Optimal Design of Composite Channels Using Meta-Heuristic Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2221-2235, August.
    9. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    10. Wenlin Yuan & Xueyan Yu & Chengguo Su & Denghua Yan & Zening Wu, 2020. "A Multi-Timescale Integrated Operation Model for Balancing Power Generation, Ecology, and Water Supply of Reservoir Operation," Energies, MDPI, vol. 14(1), pages 1-21, December.
    11. Marcos Geraldo Gomes & Victor Hugo Carlquist da Silva & Luiz Fernando Rodrigues Pinto & Plinio Centoamore & Salvatore Digiesi & Francesco Facchini & Geraldo Cardoso de Oliveira Neto, 2020. "Economic, Environmental and Social Gains of the Implementation of Artificial Intelligence at Dam Operations toward Industry 4.0 Principles," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    12. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    13. Wang Hua & Pang Yong, 2009. "Water Quantity Operation to Achieve Multi-Environmental Goals for a Waterfront Body," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1951-1968, August.
    14. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.
    15. A. Moridi & J. Yazdi, 2017. "Optimal Allocation of Flood Control Capacity for Multi-Reservoir Systems Using Multi-Objective Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4521-4538, November.
    16. Chao-Chung Yang & Liang-Cheng Chang & Chang-Shian Chen & Ming-Sheng Yeh, 2009. "Multi-objective Planning for Conjunctive Use of Surface and Subsurface Water Using Genetic Algorithm and Dynamics Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 417-437, February.
    17. Tan, Qiaofeng & Wen, Xin & Sun, Yuanliang & Lei, Xiaohui & Wang, Zhenni & Qin, Guanghua, 2021. "Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty," Applied Energy, Elsevier, vol. 285(C).
    18. J. Yazdi, 2018. "Improving Urban Drainage Systems Resiliency Against Unexpected Blockages: A Probabilistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4561-4573, November.
    19. Haojianxiong Yu & Jianjian Shen & Chuntian Cheng & Jia Lu & Huaxiang Cai, 2023. "Multi-Objective Optimal Long-Term Operation of Cascade Hydropower for Multi-Market Portfolio and Energy Stored at End of Year," Energies, MDPI, vol. 16(2), pages 1-21, January.
    20. Morteza Zargar & Hossein M. V. Samani & Ali Haghighi, 2016. "Optimization of gated spillways operation for flood risk management in multi-reservoir systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 299-320, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2105-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.