IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp1210-1224.html
   My bibliography  Save this article

Study on guaranteed output constraints in the long term joint optimal scheduling for the hydropower station group

Author

Listed:
  • He, Zhongzheng
  • Zhou, Jianzhong
  • Xie, Mengfei
  • Jia, Benjun
  • Bao, Zhengfeng
  • Qin, Hui
  • Zhang, Hairong

Abstract

Long-term joint scheduling of hydropower station group (LJSHSG) is a constrained optimization problem, which suffers from a variety of complex and time-state coupling constraints. It is beset with difficulties to solve LJSHSG problem owing to these equality constraints, rigid constraints and flexible constraints of hydropower station group (HSG). The new hybrid constraint handling method combining ε-constraint (EC) and penalty functions (PF) (named EC-PF) is proposed to deal with these constraints in this paper. In the proposed EC-PF, all equality constraints are forced to satisfy according to the equation; EC handle all rigid constraints with minimizing the value of constraint violation and constraint relaxation rule; and the unique flexible constraint, guaranteed output constraint, is processed by PF. Then the proposed EC-PF is compared with the superiority of feasible solutions (SF), stochastic ranking (SR), PF, EC and lexicographic method (LM) in the application to LJSHSG problems; the experimental results verify the superiority of the proposed method. Moreover, the conclusions that it is necessary to deal with rigid constraints from flexible constraints differently in LJSHSG problem are obtained. On this basis, in view of the defect that guaranteed output constraints are difficult to satisfy in LJSHSG, the LJSHSG with the cooperative mode to handle guaranteed output constraints (named LJSHSG-cm) is puts forward. The comparative experimental results of LJSHSG and LJSHSG-cm show that LJSHSG-cm can increase the power generation by 0.3% while increasing the satisfaction rate of guaranteed output constraints by 78.56% compared with LJSHSG for long sequence calculation from 1959 to 2014. These are fully illustrated that the hybrid constraint handling method EC-PF and LJSHSG-cm with the cooperative mode to handle guaranteed output constraints are valid and reliable practical tools in solving LJSHSG.

Suggested Citation

  • He, Zhongzheng & Zhou, Jianzhong & Xie, Mengfei & Jia, Benjun & Bao, Zhengfeng & Qin, Hui & Zhang, Hairong, 2019. "Study on guaranteed output constraints in the long term joint optimal scheduling for the hydropower station group," Energy, Elsevier, vol. 185(C), pages 1210-1224.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:1210-1224
    DOI: 10.1016/j.energy.2019.07.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219314057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Junhong Zhang & Lu Chen & Vijay Singh & Hongwen Cao & Dangwei Wang, 2015. "Determination of the distribution of flood forecasting error," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1389-1402, January.
    2. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm," Energy, Elsevier, vol. 153(C), pages 706-718.
    3. Junhong Zhang & Lu Chen & Vijay Singh & Wenhong Cao & Dangwei Wang, 2015. "Erratum to: Determination of the distribution of flood forecasting error," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 2065-2065, January.
    4. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.
    5. Jiang, Zhiqiang & Li, Anqiang & Ji, Changming & Qin, Hui & Yu, Shan & Li, Yuanzheng, 2016. "Research and application of key technologies in drawing energy storage operation chart by discriminant coefficient method," Energy, Elsevier, vol. 114(C), pages 774-786.
    6. Zhong-Kai Feng & Wen-Jing Niu & Jian-Zhong Zhou & Chun-Tian Cheng & Hui Qin & Zhi-Qiang Jiang, 2017. "Parallel Multi-Objective Genetic Algorithm for Short-Term Economic Environmental Hydrothermal Scheduling," Energies, MDPI, vol. 10(2), pages 1-22, January.
    7. Jianzhong Zhou & Mengfei Xie & Zhongzhen He & Hui Qin & Liu Yuan, 2017. "Medium-Term Hydro Generation Scheduling (MTHGS) with Chance Constrained Model (CCM) and Dynamic Control Model (DCM)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3543-3555, September.
    8. Liu Yuan & Jianzhong Zhou & Chunlong Li & Mengfei Xie & Li Mo, 2016. "Benefit and Risk Balance Optimization for Stochastic Hydropower Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3347-3361, August.
    9. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    10. Tang, Wenzhe & Li, Zhuoyu & Qiang, Maoshan & Wang, Shuli & Lu, Youmei, 2013. "Risk management of hydropower development in China," Energy, Elsevier, vol. 60(C), pages 316-324.
    11. Liu Yuan & Jianzhong Zhou, 2017. "Self-Optimization System Dynamics Simulation of Real-Time Short Term Cascade Hydropower System Considering Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2127-2140, May.
    12. Yongqi Liu & Hui Qin & Li Mo & Yongqiang Wang & Duan Chen & Shusen Pang & Xingli Yin, 2019. "Hierarchical Flood Operation Rules Optimization Using Multi-Objective Cultured Evolutionary Algorithm Based on Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 337-354, January.
    13. Jiang, Zhiqiang & Ji, Changming & Qin, Hui & Feng, Zhongkai, 2018. "Multi-stage progressive optimality algorithm and its application in energy storage operation chart optimization of cascade reservoirs," Energy, Elsevier, vol. 148(C), pages 309-323.
    14. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    15. Dubois, Didier & Fortemps, Philippe, 1999. "Computing improved optimal solutions to max-min flexible constraint satisfaction problems," European Journal of Operational Research, Elsevier, vol. 118(1), pages 95-126, October.
    16. Chang, XiaoLin & Liu, Xinghong & Zhou, Wei, 2010. "Hydropower in China at present and its further development," Energy, Elsevier, vol. 35(11), pages 4400-4406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhongzheng & Wang, Chao & Wang, Yongqiang & Wei, Bowen & Zhou, Jianzhong & Zhang, Hairong & Qin, Hui, 2021. "Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhongzheng & Wang, Chao & Wang, Yongqiang & Wei, Bowen & Zhou, Jianzhong & Zhang, Hairong & Qin, Hui, 2021. "Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group," Energy, Elsevier, vol. 222(C).
    2. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Zhou, Jian-zhong, 2017. "Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming," Energy, Elsevier, vol. 135(C), pages 210-219.
    3. He, Zhongzheng & Zhou, Jianzhong & Qin, Hui & Jia, Benjun & He, Feifei & Liu, Guangbiao & Feng, Kuaile, 2020. "A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station," Energy, Elsevier, vol. 210(C).
    4. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimal allocation of hydropower and hybrid electricity injected from inter-regional transmission lines among multiple receiving-end power grids in China," Energy, Elsevier, vol. 162(C), pages 444-452.
    5. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.
    6. Niu, Wen-jing & Feng, Zhong-kai & Cheng, Chun-tian, 2018. "Optimization of variable-head hydropower system operation considering power shortage aspect with quadratic programming and successive approximation," Energy, Elsevier, vol. 143(C), pages 1020-1028.
    7. Feng, Zhong-kai & Niu, Wen-jing & Wang, Sen & Cheng, Chun-tian & Jiang, Zhi-qiang & Qin, Hui & Liu, Yi, 2018. "Developing a successive linear programming model for head-sensitive hydropower system operation considering power shortage aspect," Energy, Elsevier, vol. 155(C), pages 252-261.
    8. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    9. Liu Yuan & Jianzhong Zhou & Zijun Mai & Yuanzheng Li, 2017. "Random Fuzzy Optimization Model for Short-Term Hydropower Scheduling Considering Uncertainty of Power Load," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2713-2728, July.
    10. Jiang, Zhiqiang & Li, Rongbo & Li, Anqiang & Ji, Changming, 2018. "Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application," Energy, Elsevier, vol. 158(C), pages 693-708.
    11. Wang, Jinwen & Chen, Cheng & Liu, Shuangquan, 2018. "A new field-levelling procedure to minimize spillages in hydropower reservoir operation," Energy, Elsevier, vol. 160(C), pages 979-985.
    12. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    13. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Wu, Xin-yu, 2017. "Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction," Energy, Elsevier, vol. 134(C), pages 718-730.
    14. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    15. Shirisha Pulukuri & Venkata Reddy Keesara & Pratap Deva, 2018. "Flow Forecasting in a Watershed using Autoregressive Updating Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2701-2716, June.
    16. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    17. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    18. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    19. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    20. Zhongzheng He & Chao Wang & Yongqiang Wang & Hairong Zhang & Heng Yin, 2022. "An Efficient Optimization Method for Long-term Power Generation Scheduling of Hydropower Station: Improved Dynamic Programming with a Relaxation Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1481-1497, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:1210-1224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.