IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i1p239-263.html
   My bibliography  Save this article

Total Urban Water Cycle Models in Semiarid Environments—Quantitative Scenario Analysis at the Area of San Luis Potosi, Mexico

Author

Listed:
  • Sandra Martinez
  • Oscar Escolero
  • Leif Wolf

Abstract

Systems view thinking and holistic urban water cycle concepts are increasingly called upon for integrated analysis of urban water systems to mitigate water stress in large urban agglomerations. However, integrated analysis is frequently not applied due to the inherent complexity, limitations in data availability and especially the lack of guidelines and suitable software tools. The paper presents the application of the total urban water balance model UVQ to the City of San Luis Potosi (1.2 Mio inhabitants) under the arid conditions of Northern Mexico. UVQ is a lumped parameter model which describes water and contaminant flows from source to sink in urban areas and includes all water types such as rainwater, imported water, surface runoff, wastewater and groundwater. The results were especially useful for spatially explicit groundwater recharge calculation in urban areas. A range of urban water scenarios, including different supply strategies and the effect of externalities such as demand change, were simulated and compared to a calibrated baseline scenario. The analysis demonstrated that shallow urban groundwater resources can substantially mitigate problems of water scarcity and overexploitation of deep aquifers if appropriate water quality protection or fit-for-use paradigms are put into place. The modelling exercise delivers relevant information for the decision making process and identifies the most relevant shortcomings in current monitoring systems. This represents a key step on the path to water sensitive and sustainable urban development, including the urban aquifers which have been neglected in the management policy of most cities of the Mexican arid zone. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Sandra Martinez & Oscar Escolero & Leif Wolf, 2011. "Total Urban Water Cycle Models in Semiarid Environments—Quantitative Scenario Analysis at the Area of San Luis Potosi, Mexico," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 239-263, January.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:1:p:239-263
    DOI: 10.1007/s11269-010-9697-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9697-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9697-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang Xiaoqin, 2009. "A Proposal and Application of the Integrated Benefit Assessment Model for Urban Water Resources Exploitation and Utilization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1171-1182, April.
    2. Parviz Fattahi & Saeed Fayyaz, 2010. "A Compromise Programming Model to Integrated Urban Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1211-1227, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Ignacio Vanegas-Espinosa & David Vargas-del-Río & Gabriela Ochoa-Covarrubias & Alejandro Luis Grindlay, 2022. "Flood Mitigation in Urban Areas through Deep Aquifer Recharge: The Case of the Metropolitan Area of Guadalajara," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
    2. Arnim Wiek & Kelli Larson, 2012. "Water, People, and Sustainability—A Systems Framework for Analyzing and Assessing Water Governance Regimes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3153-3171, September.
    3. Peter Zeisl & Michael Mair & Ulrich Kastlunger & Peter M. Bach & Wolfgang Rauch & Robert Sitzenfrei & Manfred Kleidorfer, 2018. "Conceptual Urban Water Balance Model for Water Policy Testing: An Approach for Large Scale Investigation," Sustainability, MDPI, vol. 10(3), pages 1-24, March.
    4. Shao, Weiwei & Liu, Jiahong & Zhu, Mingming & Weng, Baisha & Wang, Ning & Huang, Hao & Yu, Yingdong & Yan, Dianyi & Jiang, Shan, 2018. "Evaluation of a photovoltaic water-supply scheme for the surface water system in Xiamen, China," Applied Energy, Elsevier, vol. 230(C), pages 357-373.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    2. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    3. R. Roozbahani & B. Abbasi & S. Schreider, 2015. "Optimal allocation of water to competing stakeholders in a shared watershed," Annals of Operations Research, Springer, vol. 229(1), pages 657-676, June.
    4. Eun-Sung Chung & Won-Pyo Hong & Kil Lee & Steven Burian, 2011. "Integrated Use of a Continuous Simulation Model and Multi-Attribute Decision-Making for Ranking Urban Watershed Management Alternatives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 641-659, January.
    5. Guadalajara-Olmeda, N. & Rua-Aguilar, M. Jose, 2015. "Programación y compromiso. Cómo equilibrar dos objetivos, económico y ambiental, en una promoción de viviendas," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 15(01).
    6. R. Roozbahani & S. Schreider & B. Abbasi, 2013. "Economic Sharing of Basin Water Resources between Competing Stakeholders," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2965-2988, June.
    7. Gao, Hongchao & Wei, Tong & Lou, Inchio & Yang, Zhifeng & Shen, Zhenyao & Li, Yingxia, 2014. "Water saving effect on integrated water resource management," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 50-58.
    8. Jorge Pinto & Humberto Varum & Isabel Bentes & Jitendra Agarwal, 2010. "A Theory of Vulnerability of Water Pipe Network (TVWPN)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4237-4254, December.
    9. Mahdi Zarghami, 2010. "Urban Water Management Using Fuzzy-Probabilistic Multi-Objective Programming with Dynamic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4491-4504, December.
    10. Li, Mo & Cao, Xiaoxu & Liu, Dong & Fu, Qiang & Li, Tianxiao & Shang, Ruochen, 2022. "Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach," Agricultural Water Management, Elsevier, vol. 259(C).
    11. F. Gonçalves & L. Costa & Helena Ramos, 2011. "ANN for Hybrid Energy System Evaluation: Methodology and WSS Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2295-2317, July.
    12. Ali Azarnivand & Mohammad Ebrahim Banihabib, 2017. "A Multi-level Strategic Group Decision Making for Understanding and Analysis of Sustainable Watershed Planning in Response to Environmental Perplexities," Group Decision and Negotiation, Springer, vol. 26(3), pages 629-648, May.
    13. Gonçalves, F.V. & Costa, L.H. & Ramos, H.M., 2011. "Best economical hybrid energy solution: Model development and case study of a WDS in Portugal," Energy Policy, Elsevier, vol. 39(6), pages 3361-3369, June.
    14. Rahimeh Neamatian Monemi & Shahin Gelareh & Anass Nagih & Dylan Jones, 2021. "Bi-objective load balancing multiple allocation hub location: a compromise programming approach," Annals of Operations Research, Springer, vol. 296(1), pages 363-406, January.
    15. Hadi Tarebari & Amir Hossein Javid & Seyyed Ahmad Mirbagheri & Hedayat Fahmi, 2018. "Multi-Objective Surface Water Resource Management Considering Conflict Resolution and Utility Function Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4487-4509, November.
    16. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2022. "Multi criteria analysis of alternative energy technologies based on their predicted impact on community sustainable livelihoods capitals: A case of Uganda," Renewable Energy, Elsevier, vol. 182(C), pages 1103-1125.
    17. Babak Zolghadr-Asli & Omid Bozorg-Haddad & Maedeh Enayati & Xuefeng Chu, 2021. "A review of 20-year applications of multi-attribute decision-making in environmental and water resources planning and management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14379-14404, October.
    18. Erol, Ismail & Oztel, Ahmet & Searcy, Cory & Medeni, İ. Tolga, 2023. "Selecting the most suitable blockchain platform: A case study on the healthcare industry using a novel rough MCDM framework," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    19. Pradeep Dogra & V. Sharda & P. Ojasvi & Shiv Prasher & R. Patel, 2014. "Compromise Programming Based Model for Augmenting Food Production with Minimum Water Allocation in a Watershed: a Case Study in the Indian Himalayas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5247-5265, December.
    20. Zarghami, Mahdi & Hajykazemian, Hassan, 2013. "Urban water resources planning by using a modified particle swarm optimization algorithm," Resources, Conservation & Recycling, Elsevier, vol. 70(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:1:p:239-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.