IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v22y2014i1p290-320.html
   My bibliography  Save this article

Queues with interruptions: a survey

Author

Listed:
  • A. Krishnamoorthy
  • P. Pramod
  • S. Chakravarthy

Abstract

In this paper we survey work related to queues with interruptions that occur due to many reasons such as server breakdowns, servers taking emergency breaks, and customers having incomplete information or getting distracted. We look at both continuous and discrete time queueing models with interruptions in this survey. Copyright Sociedad de Estadística e Investigación Operativa 2014

Suggested Citation

  • A. Krishnamoorthy & P. Pramod & S. Chakravarthy, 2014. "Queues with interruptions: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 290-320, April.
  • Handle: RePEc:spr:topjnl:v:22:y:2014:i:1:p:290-320
    DOI: 10.1007/s11750-012-0256-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-012-0256-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-012-0256-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fiems, Dieter & Maertens, Tom & Bruneel, Herwig, 2008. "Queueing systems with different types of server interruptions," European Journal of Operational Research, Elsevier, vol. 188(3), pages 838-845, August.
    2. Kim, Chesoong & Klimenok, Valentina I. & Orlovsky, Dmitry S., 2008. "The BMAP/PH/N retrial queue with Markovian flow of breakdowns," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1057-1072, September.
    3. I. Atencia & P. Moreno, 2006. "A Discrete-Time Geo/ G/1 retrial queue with the server subject to starting failures," Annals of Operations Research, Springer, vol. 141(1), pages 85-107, January.
    4. Awi Federgruen & Linda Green, 1986. "Queueing Systems with Service Interruptions," Operations Research, INFORMS, vol. 34(5), pages 752-768, October.
    5. Muhammad El-Taha & Bacel Maddah, 2006. "Allocation of Service Time in a Multiserver System," Management Science, INFORMS, vol. 52(4), pages 623-637, April.
    6. Baykal-Gürsoy, M. & Xiao, W. & Ozbay, K., 2009. "Modeling traffic flow interrupted by incidents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 127-138, May.
    7. Attahiru Alfa, 2002. "Discrete time queues and matrix-analytic methods," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 147-185, December.
    8. M. J. Fischer, 1977. "An Approximation to Queueing Systems with Interruptions," Management Science, INFORMS, vol. 24(3), pages 338-344, November.
    9. K. C. Madan, 1973. "A priority queueing system with service interruptions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 27(3), pages 115-123, September.
    10. Surendra Gupta & Ayse Kavusturucu, 2000. "Production systems with interruptions, arbitrary topology and finite buffers," Annals of Operations Research, Springer, vol. 93(1), pages 145-176, January.
    11. I. L. Mitrany & B. Avi-Itzhak, 1968. "A Many-Server Queue with Service Interruptions," Operations Research, INFORMS, vol. 16(3), pages 628-638, June.
    12. Vinck, Bart & Bruneel, Herwig, 2006. "System delay versus system content for discrete-time queueing systems subject to server interruptions," European Journal of Operational Research, Elsevier, vol. 175(1), pages 362-375, November.
    13. Dieter Fiems & Bart Steyaert & Herwig Bruneel, 2002. "Randomly Interrupted GI-G-1 Queues: Service Strategies and Stability Issues," Annals of Operations Research, Springer, vol. 112(1), pages 171-183, April.
    14. Awi Federgruen & Linda Green, 1988. "Queueing systems with service interruptions II," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(3), pages 345-358, June.
    15. Marcel F. Neuts & David M. Lucantoni, 1979. "A Markovian Queue with N Servers Subject to Breakdowns and Repairs," Management Science, INFORMS, vol. 25(9), pages 849-861, September.
    16. B. Avi-Itzhak & P. Naor, 1963. "Some Queuing Problems with the Service Station Subject to Breakdown," Operations Research, INFORMS, vol. 11(3), pages 303-320, June.
    17. Bruneel, Herwig, 1986. "A general treatment of discrete-time buffers with one randomly interrupted output line," European Journal of Operational Research, Elsevier, vol. 27(1), pages 67-81, October.
    18. Joris Walraevens & Bart Steyaert & Herwig Bruneel, 2006. "A preemptive repeat priority queue with resampling: Performance analysis," Annals of Operations Research, Springer, vol. 146(1), pages 189-202, September.
    19. N. K. Jaiswal, 1961. "Preemptive Resume Priority Queue," Operations Research, INFORMS, vol. 9(5), pages 732-742, October.
    20. Laevens, Koenraad & Bruneel, Herwig, 1995. "Delay analysis for discrete-time queueing systems with multiple randomly interrupted servers," European Journal of Operational Research, Elsevier, vol. 85(1), pages 161-177, August.
    21. Lotfi Tadj & Gautam Choudhury, 2005. "Optimal design and control of queues," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 359-412, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Zhu & Jinting Wang & Bin Liu, 2020. "Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs," Operational Research, Springer, vol. 20(4), pages 2163-2187, December.
    2. I. Atencia, 2015. "A discrete-time queueing system with server breakdowns and changes in the repair times," Annals of Operations Research, Springer, vol. 235(1), pages 37-49, December.
    3. Maria E. Mayorga & Emmett J. Lodree & Justin Wolczynski, 2017. "The optimal assignment of spontaneous volunteers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1106-1116, September.
    4. Hiroyuki Sakurai & Tuan Phung-Duc, 2015. "Two-way communication retrial queues with multiple types of outgoing calls," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 466-492, July.
    5. Atencia-Mc.Killop, Ivan & Galán-García, José L. & Aguilera-Venegas, Gabriel & Rodríguez-Cielos, Pedro & Galán-García, MÁngeles, 2018. "A Geo[X]/G[X]/1 retrial queueing system with removal work and total renewal discipline," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 245-253.
    6. Abualkhair, Hussain & Lodree, Emmett J. & Davis, Lauren B., 2020. "Managing volunteer convergence at disaster relief centers," International Journal of Production Economics, Elsevier, vol. 220(C).
    7. Divya Velayudhan Nair & Achyutha Krishnamoorthy & Agassi Melikov & Sevinj Aliyeva, 2021. "MMAP/(PH,PH)/1 Queue with Priority Loss through Feedback," Mathematics, MDPI, vol. 9(15), pages 1-26, July.
    8. Freek Verdonck & Herwig Bruneel & Sabine Wittevrongel, 2022. "Delay analysis of a discrete-time single-server queue with an occasional extra server," Annals of Operations Research, Springer, vol. 310(2), pages 551-575, March.
    9. Michiel Muynck & Sabine Wittevrongel & Herwig Bruneel, 2017. "Analysis of discrete-time queues with general service demands and finite-support service capacities," Annals of Operations Research, Springer, vol. 252(1), pages 3-28, May.
    10. Muthukrishnan Senthil Kumar & Aresh Dadlani & Kiseon Kim, 2020. "Performance analysis of an unreliable M/G/1 retrial queue with two-way communication," Operational Research, Springer, vol. 20(4), pages 2267-2280, December.
    11. Hauser, Matthias & Flath, Christoph M. & Thiesse, Frédéric, 2021. "Catch me if you scan: Data-driven prescriptive modeling for smart store environments," European Journal of Operational Research, Elsevier, vol. 294(3), pages 860-873.
    12. Atencia, I., 2017. "A Geo/G/1 retrial queueing system with priority services," European Journal of Operational Research, Elsevier, vol. 256(1), pages 178-186.
    13. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    14. Hoseinpour, Pooya & Ahmadi-Javid, Amir, 2016. "A profit-maximization location-capacity model for designing a service system with risk of service interruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 113-134.
    15. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    16. G. Ayyappan & S. Karpagam, 2018. "An M [ X ] / G ( a , b )/1 Queueing System with Breakdown and Repair, Stand-By Server, Multiple Vacation and Control Policy on Request for Re-Service," Mathematics, MDPI, vol. 6(6), pages 1-18, June.
    17. Guodong Pang & Andrey Sarantsev & Yana Belopolskaya & Yuri Suhov, 2020. "Stationary distributions and convergence for M/M/1 queues in interactive random environment," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 357-392, April.
    18. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    19. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.
    20. Alexander Dudin & Olga Dudina & Sergei Dudin & Konstantin Samouylov, 2021. "Analysis of Multi-Server Queue with Self-Sustained Servers," Mathematics, MDPI, vol. 9(17), pages 1-18, September.
    21. Zamani, Shokufeh & Arkat, Jamal & Niaki, Seyed Taghi Akhavan, 2022. "Service interruption and customer withdrawal in the congested facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    22. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    23. Limin Rong & Feng Dong & Qiguo Gong, 2021. "Work Interruption: The Moderate Effect of Workload and Queue Length in the Manufacturing Industry," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 11(8), pages 618-631, August.
    24. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2019. "Service system design for managing interruption risks: A backup-service risk-mitigation strategy," European Journal of Operational Research, Elsevier, vol. 274(2), pages 417-431.
    25. Dieter Claeys & Stijn De Vuyst, 2019. "Discrete-time modified number- and time-limited vacation queues," Queueing Systems: Theory and Applications, Springer, vol. 91(3), pages 297-318, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedram Sahba & Bariş Balciog̃lu & Dragan Banjevic, 2013. "Analysis of the finite‐source multiclass priority queue with an unreliable server and setup time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 331-342, June.
    2. Pedram Sahba & Barış Balcıog̃lu & Dragan Banjevic, 2022. "The impact of disruption characteristics on the performance of a server," Annals of Operations Research, Springer, vol. 317(1), pages 239-252, October.
    3. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    4. Sheng Zhu & Jinting Wang & Bin Liu, 2020. "Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs," Operational Research, Springer, vol. 20(4), pages 2163-2187, December.
    5. Miaomiao Yu & Yinghui Tang, 2022. "Analysis of a renewal batch arrival queue with a fault-tolerant server using shift operator method," Operational Research, Springer, vol. 22(3), pages 2831-2858, July.
    6. I. Atencia, 2015. "A discrete-time queueing system with server breakdowns and changes in the repair times," Annals of Operations Research, Springer, vol. 235(1), pages 37-49, December.
    7. Chen, Shih-Pin, 2016. "Time value of delays in unreliable production systems with mixed uncertainties of fuzziness and randomness," European Journal of Operational Research, Elsevier, vol. 255(3), pages 834-844.
    8. Wartenhorst, Pieter, 1995. "N parallel queueing systems with server breakdown and repair," European Journal of Operational Research, Elsevier, vol. 82(2), pages 302-322, April.
    9. Awi Federgruen & Linda Green, 1988. "Queueing systems with service interruptions II," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(3), pages 345-358, June.
    10. Freek Verdonck & Herwig Bruneel & Sabine Wittevrongel, 2021. "Delay in a 2-State Discrete-Time Queue with Stochastic State-Period Lengths and State-Dependent Server Availability and Arrivals," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    11. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    12. Atencia, I., 2017. "A Geo/G/1 retrial queueing system with priority services," European Journal of Operational Research, Elsevier, vol. 256(1), pages 178-186.
    13. Fiems, Dieter & Maertens, Tom & Bruneel, Herwig, 2008. "Queueing systems with different types of server interruptions," European Journal of Operational Research, Elsevier, vol. 188(3), pages 838-845, August.
    14. Atencia-Mc.Killop, Ivan & Galán-García, José L. & Aguilera-Venegas, Gabriel & Rodríguez-Cielos, Pedro & Galán-García, MÁngeles, 2018. "A Geo[X]/G[X]/1 retrial queueing system with removal work and total renewal discipline," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 245-253.
    15. Freek Verdonck & Herwig Bruneel & Sabine Wittevrongel, 2022. "Delay analysis of a discrete-time single-server queue with an occasional extra server," Annals of Operations Research, Springer, vol. 310(2), pages 551-575, March.
    16. Hoseinpour, Pooya & Ahmadi-Javid, Amir, 2016. "A profit-maximization location-capacity model for designing a service system with risk of service interruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 113-134.
    17. L. G. Afanasyeva, 2020. "Asymptotic Analysis of Queueing Models Based on Synchronization Method," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1417-1438, December.
    18. Herwig Bruneel & Sabine Wittevrongel & Dieter Claeys & Joris Walraevens, 2016. "Discrete-time queues with variable service capacity: a basic model and its analysis," Annals of Operations Research, Springer, vol. 239(2), pages 359-380, April.
    19. Arnaud Devos & Joris Walraevens & Dieter Fiems & Herwig Bruneel, 2020. "Analysis of a discrete-time two-class randomly alternating service model with Bernoulli arrivals," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 133-152, October.
    20. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:22:y:2014:i:1:p:290-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.