IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v85y2024i3d10.1007_s11235-023-01089-z.html
   My bibliography  Save this article

Secure and trustworthiness IoT systems: investigations and literature review

Author

Listed:
  • Wiem Bekri

    (Digital Research Center of Sfax (CRNS)
    University of Sfax)

  • Rihab Jmal

    (Digital Research Center of Sfax (CRNS)
    University of Sfax)

  • Lamia Chaari Fourati

    (Digital Research Center of Sfax (CRNS)
    University of Sfax)

Abstract

Internet of Things (IoT) is creating a new automated environment where human interaction is limited, in which smart-physical objects obtain the power to produce, acquire, and exchange data seamlessly. Hence, diverse IoT systems concentrate on automating various tasks. These automated applications and systems are highly promising to increase user satisfaction while also increasing security-related challenges. Accordingly, Security and Trust are critical elements for users' well-being. In this paper, we investigate the security and trust properties along with the focus on various existing novel technologies (Software-defined networking, Blockchain, and Artificial Intelligence) and provide a survey on the current literature advances towards secure and trustworthy IoT. Furthermore, we present a detailed study on various security and trust issues in various IoT environments. Moreover, we discuss real-life IoT-security projects, specify research challenges, and indicate future research trends.

Suggested Citation

  • Wiem Bekri & Rihab Jmal & Lamia Chaari Fourati, 2024. "Secure and trustworthiness IoT systems: investigations and literature review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 85(3), pages 503-538, March.
  • Handle: RePEc:spr:telsys:v:85:y:2024:i:3:d:10.1007_s11235-023-01089-z
    DOI: 10.1007/s11235-023-01089-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-023-01089-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-023-01089-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anupama Mishra & Neena Gupta & B. B. Gupta, 2021. "Defense mechanisms against DDoS attack based on entropy in SDN-cloud using POX controller," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(1), pages 47-62, May.
    2. Scott Thiebes & Sebastian Lins & Ali Sunyaev, 2021. "Trustworthy artificial intelligence," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(2), pages 447-464, June.
    3. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misbah Liaqat & Abdulwahab Ali Almazroi & Junaid Shuja & Ehzaz Mustafa, 2024. "Securing oil port logistics: A blockchain framework for efficient and trustworthy trade documents," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Wanner & Lukas-Valentin Herm & Kai Heinrich & Christian Janiesch, 2022. "The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2079-2102, December.
    2. Niklas Kühl & Max Schemmer & Marc Goutier & Gerhard Satzger, 2022. "Artificial intelligence and machine learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2235-2244, December.
    3. Lukas-Valentin Herm & Theresa Steinbach & Jonas Wanner & Christian Janiesch, 2022. "A nascent design theory for explainable intelligent systems," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2185-2205, December.
    4. Alexander Mayr & Philip Stahmann & Maximilian Nebel & Christian Janiesch, 2024. "Still doing it yourself? Investigating determinants for the adoption of intelligent process automation," Electronic Markets, Springer;IIM University of St. Gallen, vol. 34(1), pages 1-22, December.
    5. Md Shajalal & Alexander Boden & Gunnar Stevens, 2022. "Explainable product backorder prediction exploiting CNN: Introducing explainable models in businesses," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2107-2122, December.
    6. Rainer Alt, 2021. "Electronic Markets on digital platforms and AI," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(2), pages 233-241, June.
    7. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    8. Mostafa Bigdeli & Mahsa Akbari, 2024. "Machine-learning-based Classification of Customers’ Behavioural Model in Instagram," Paradigm, , vol. 28(2), pages 223-240, December.
    9. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    10. Rainer Alt, 2021. "Electronic Markets on robotics," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 465-471, September.
    11. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    12. Najla Alharbi & Bashayer Alkalifah & Ghaida Alqarawi & Murad A. Rassam, 2024. "Countering Social Media Cybercrime Using Deep Learning: Instagram Fake Accounts Detection," Future Internet, MDPI, vol. 16(10), pages 1-22, October.
    13. Chenyuan Liu & Heng Li & Kexin Li & Yue Wu & Baogang Lv, 2025. "Deep Learning for State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles: A Systematic Review," Energies, MDPI, vol. 18(6), pages 1-20, March.
    14. Abdulwahhab, Ali H. & Abdulaal, Alaa Hussein & Thary Al-Ghrairi, Assad H. & Mohammed, Ali Abdulwahhab & Valizadeh, Morteza, 2024. "Detection of epileptic seizure using EEG signals analysis based on deep learning techniques," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    15. Abhirup Khanna & Bhawna Yadav Lamba & Sapna Jain & Vadim Bolshev & Dmitry Budnikov & Vladimir Panchenko & Alexandr Smirnov, 2023. "Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    16. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    17. Roberto Cascante-Yarlequé & Purificación Galindo-Villardón & Fabricio Guevara-Viejó & José Luis Vicente-Villardón & Purificación Vicente-Galindo, 2025. "HJ-BIPLOT : A Theoretical and Empirical Systematic Review of Its 38 Years of History, Using Text Mining and LLMs," Mathematics, MDPI, vol. 13(12), pages 1-35, June.
    18. Leonardo Banh & Gero Strobel, 2023. "Generative artificial intelligence," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-17, December.
    19. Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    20. Frank Bodendorf, 2025. "A data-driven use case planning and assessment approach for AI portfolio management," Electronic Markets, Springer;IIM University of St. Gallen, vol. 35(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:85:y:2024:i:3:d:10.1007_s11235-023-01089-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.