IDEAS home Printed from https://ideas.repec.org/a/spr/infsem/v23y2025i1d10.1007_s10257-023-00626-2.html
   My bibliography  Save this article

Darknet traffic analysis, and classification system based on modified stacking ensemble learning algorithms

Author

Listed:
  • Ammar Almomani

    (Al-Huson University College, Al-Balqa Applied University
    Skyline University College)

Abstract

Darknet, a source of cyber intelligence, refers to the internet’s unused address space, which people do not expect to interact with their computers. The establishment of security requires analyses of the threats characterizing the network. New machine learning classifiers known as stacking ensemble learning are proposed in this paper to analyze and classify darknet traffic. In dealing with darknet attack problems, this new system uses predictions formed by 3 base learning techniques. The system was tested on a dataset comprising more than 141,000 records analyzed from CIC-Darknet 2020. The experiment results demonstrated the study’s classifiers’ ability to distinguish between the malignant traffic and benign traffic easily. The classifiers can effectively detect known and unknown threats with high precision and accuracy greater than 99% in the training and 97% in the testing phases, with increments ranging from 4 to 64% by current algorithms. As a result, the proposed system becomes more robust and accurate as data grows. Also, the proposed system has the best standard deviation compared with current A.I. algorithms.

Suggested Citation

  • Ammar Almomani, 2025. "Darknet traffic analysis, and classification system based on modified stacking ensemble learning algorithms," Information Systems and e-Business Management, Springer, vol. 23(1), pages 209-240, March.
  • Handle: RePEc:spr:infsem:v:23:y:2025:i:1:d:10.1007_s10257-023-00626-2
    DOI: 10.1007/s10257-023-00626-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10257-023-00626-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10257-023-00626-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Anupama Mishra & Neena Gupta & B. B. Gupta, 2021. "Defense mechanisms against DDoS attack based on entropy in SDN-cloud using POX controller," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(1), pages 47-62, May.
    2. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    2. Anshuman Singh & Brij B. Gupta, 2022. "Distributed Denial-of-Service (DDoS) Attacks and Defense Mechanisms in Various Web-Enabled Computing Platforms: Issues, Challenges, and Future Research Directions," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global Scientific Publishing, vol. 18(1), pages 1-43, January.
    3. Gupta, Brij B. & Gaurav, Akshat & Panigrahi, Prabin Kumar & Arya, Varsha, 2023. "Analysis of artificial intelligence-based technologies and approaches on sustainable entrepreneurship," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    4. Caston Sigauke & Murendeni Maurel Nemukula & Daniel Maposa, 2018. "Probabilistic Hourly Load Forecasting Using Additive Quantile Regression Models," Energies, MDPI, vol. 11(9), pages 1-21, August.
    5. Nan Wei & Changjun Li & Jiehao Duan & Jinyuan Liu & Fanhua Zeng, 2019. "Daily Natural Gas Load Forecasting Based on a Hybrid Deep Learning Model," Energies, MDPI, vol. 12(2), pages 1-15, January.
    6. Gaurav, Akshat & Gupta, Brij B. & Panigrahi, Prabin Kumar, 2022. "A novel approach for DDoS attacks detection in COVID-19 scenario for small entrepreneurs," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    7. Wiem Bekri & Rihab Jmal & Lamia Chaari Fourati, 2024. "Secure and trustworthiness IoT systems: investigations and literature review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 85(3), pages 503-538, March.
    8. Zhang Ling & Zhang Jia Hao, 2022. "An Intrusion Detection System Based on Normalized Mutual Information Antibodies Feature Selection and Adaptive Quantum Artificial Immune System," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global Scientific Publishing, vol. 18(1), pages 1-25, January.
    9. Hui Huang & Qiliang Zhu & Xueling Zhu & Jinhua Zhang, 2023. "An Adaptive, Data-Driven Stacking Ensemble Learning Framework for the Short-Term Forecasting of Renewable Energy Generation," Energies, MDPI, vol. 16(4), pages 1-20, February.
    10. Francisco Martínez-Álvarez & Alicia Troncoso & José C. Riquelme, 2018. "Data Science and Big Data in Energy Forecasting," Energies, MDPI, vol. 11(11), pages 1-2, November.
    11. Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
    12. Anupama Mishra & Neena Gupta & Brij B. Gupta, 2023. "Defensive mechanism against DDoS attack based on feature selection and multi-classifier algorithms," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 82(2), pages 229-244, February.
    13. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    14. Wu, Wen-Ze & Pang, Haodan & Zheng, Chengli & Xie, Wanli & Liu, Chong, 2021. "Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: A case of Hubei in China," Energy, Elsevier, vol. 229(C).
    15. Sizhe Zhang & Jinqi Liu & Jihong Wang, 2023. "High-Resolution Load Forecasting on Multiple Time Scales Using Long Short-Term Memory and Support Vector Machine," Energies, MDPI, vol. 16(4), pages 1-22, February.
    16. ZeYuan Fu, 2022. "Computer cyberspace security mechanism supported by cloud computing," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-17, October.
    17. Bowen Zhou & Xinyu Chen & Guangdi Li & Peng Gu & Jing Huang & Bo Yang, 2023. "XGBoost–SFS and Double Nested Stacking Ensemble Model for Photovoltaic Power Forecasting under Variable Weather Conditions," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
    18. Yuansheng Huang & Lei Yang & Chong Gao & Yuqing Jiang & Yulin Dong, 2019. "A Novel Prediction Approach for Short-Term Renewable Energy Consumption in China Based on Improved Gaussian Process Regression," Energies, MDPI, vol. 12(21), pages 1-17, November.
    19. Akber Ali Khan & Vinod Kumar & Musheer Ahmad & B. B. Gupta & Musheer Ahmad & Ahmed A. Abd El-Latif, 2021. "A secure and efficient key agreement framework for critical energy infrastructure using mobile device," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(4), pages 539-557, December.
    20. Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infsem:v:23:y:2025:i:1:d:10.1007_s10257-023-00626-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.