IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0271546.html
   My bibliography  Save this article

Computer cyberspace security mechanism supported by cloud computing

Author

Listed:
  • ZeYuan Fu

Abstract

To improve the cybersecurity of Cloud Computing (CC) system. This paper proposes a Network Anomaly Detection (NAD) model based on the Fuzzy-C-Means (FCM) clustering algorithm. Secondly, the Cybersecurity Assessment Model (CAM) based on Grey Relational Grade (GRG) is creatively constructed. Finally, combined with Rivest Shamir Adleman (RSA) algorithm, this work proposes a CC network-oriented data encryption technology, selects different data sets for different models, and tests each model through design experiments. The results show that the average Correct Detection Rate (CDR) of the NAD model for different types of abnormal data is 93.33%. The average False Positive Rate (FPR) and the average Unreported Rate (UR) are 6.65% and 16.27%, respectively. Thus, the NAD model can ensure a high detection accuracy in the case of sufficient data. Meanwhile, the cybersecurity situation prediction by the CAM is in good agreement with the actual situation. The error between the average value of cybersecurity situation prediction and the actual value is only 0.82%, and the prediction accuracy is high. The RSA algorithm can control the average encryption time for very large text, about 12s. The decryption time is slightly longer but within a reasonable range. For different-size text, the encryption time is maintained within 0.5s. This work aims to provide important technical support for anomaly detection, overall security situation analysis, and data transmission security protection of CC systems to improve their cybersecurity.

Suggested Citation

  • ZeYuan Fu, 2022. "Computer cyberspace security mechanism supported by cloud computing," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-17, October.
  • Handle: RePEc:plo:pone00:0271546
    DOI: 10.1371/journal.pone.0271546
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271546
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271546&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0271546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anupama Mishra & Neena Gupta & B. B. Gupta, 2021. "Defense mechanisms against DDoS attack based on entropy in SDN-cloud using POX controller," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(1), pages 47-62, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anupama Mishra & Neena Gupta & Brij B. Gupta, 2023. "Defensive mechanism against DDoS attack based on feature selection and multi-classifier algorithms," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 82(2), pages 229-244, February.
    2. Anshuman Singh & Brij B. Gupta, 2022. "Distributed Denial-of-Service (DDoS) Attacks and Defense Mechanisms in Various Web-Enabled Computing Platforms: Issues, Challenges, and Future Research Directions," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 18(1), pages 1-43, January.
    3. Gupta, Brij B. & Gaurav, Akshat & Panigrahi, Prabin Kumar & Arya, Varsha, 2023. "Analysis of artificial intelligence-based technologies and approaches on sustainable entrepreneurship," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    4. Gaurav, Akshat & Gupta, Brij B. & Panigrahi, Prabin Kumar, 2022. "A novel approach for DDoS attacks detection in COVID-19 scenario for small entrepreneurs," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    5. Wiem Bekri & Rihab Jmal & Lamia Chaari Fourati, 2024. "Secure and trustworthiness IoT systems: investigations and literature review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 85(3), pages 503-538, March.
    6. Zhang Ling & Zhang Jia Hao, 2022. "An Intrusion Detection System Based on Normalized Mutual Information Antibodies Feature Selection and Adaptive Quantum Artificial Immune System," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 18(1), pages 1-25, January.
    7. Akber Ali Khan & Vinod Kumar & Musheer Ahmad & B. B. Gupta & Musheer Ahmad & Ahmed A. Abd El-Latif, 2021. "A secure and efficient key agreement framework for critical energy infrastructure using mobile device," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(4), pages 539-557, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.