IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v84y2023i4d10.1007_s11235-023-01062-w.html
   My bibliography  Save this article

WSN node localization algorithm of sparrow search based on elite opposition-based learning and Levy flight

Author

Listed:
  • Xiuwu Yu

    (University of South China)

  • Wei Peng

    (University of South China)

  • Yong Liu

    (University of South China)

Abstract

In order to improve localization accuracy of localization algorithm based on received signal strength indication in wireless sensor network (WSN), a WSN node localization algorithm based on sparrow search improved by elite opposition-based learning and Levy flight (SSELF) is proposed. Firstly, the sparrow population is initialized by using the chaotic map to enhance population diversity and accelerate algorithm convergence speed. Secondly, the elite opposition-based learning strategy is applied to increase the diversity of the sparrow population and improve global search capability. Then, the Levy flight strategy is adopted to enhance the ability to jump out of local optimal solution. Finally, the SSELF is used to estimated the positions of unknown nodes.The simulation results demonstrate that the proposed SSELF outperforms the four comparison algorithms in terms of localization accuracy.

Suggested Citation

  • Xiuwu Yu & Wei Peng & Yong Liu, 2023. "WSN node localization algorithm of sparrow search based on elite opposition-based learning and Levy flight," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 84(4), pages 521-531, December.
  • Handle: RePEc:spr:telsys:v:84:y:2023:i:4:d:10.1007_s11235-023-01062-w
    DOI: 10.1007/s11235-023-01062-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-023-01062-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-023-01062-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alatas, Bilal & Akin, Erhan & Ozer, A. Bedri, 2009. "Chaos embedded particle swarm optimization algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1715-1734.
    2. Ayong Ye & Yuanjing Ling & Li Xu & Xiaoliang Yang, 2013. "An Improved RFID-Based Localization Algorithm for Wireless Sensor Networks," International Journal of Distributed Sensor Networks, , vol. 9(5), pages 390194-3901, May.
    3. Huafeng Wu & Lei Yang & Ling Liu & Ming Xu & Xinping Guan, 2013. "Real-Time Localization Algorithm for Maritime Search and Rescue Wireless Sensor Network," International Journal of Distributed Sensor Networks, , vol. 9(3), pages 791981-7919, March.
    4. Lin-zhe Zhao & Xian-bin Wen & Dan Li, 2015. "Amorphous Localization Algorithm Based on BP Artificial Neural Network," International Journal of Distributed Sensor Networks, , vol. 11(7), pages 657241-6572, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingol, Harun & Alatas, Bilal, 2020. "Chaos based optics inspired optimization algorithms as global solution search approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Ahmadi, Mohamadreza & Mojallali, Hamed, 2012. "Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1108-1120.
    3. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    4. Saghaei, Mahsa & Ghaderi, Hadi & Soleimani, Hamed, 2020. "Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand," Energy, Elsevier, vol. 197(C).
    5. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    6. Shuyi Zhao & Chenshuo Ma & Zhiao Cao, 2025. "Improved Multi-Objective Strategy Diversity Chaotic Particle Swarm Optimization of Ordered Charging Strategy for Electric Vehicles Considering User Behavior," Energies, MDPI, vol. 18(3), pages 1-23, February.
    7. Ma, Yuze & Han, Xu & Zhang, Ting & Li, Ang & Song, Zhicheng & Li, Tao & Wang, Yongli, 2024. "Research on station-network planning of electricity-thermal -cooling regional integrated energy system considering multiple-load clusters and network costs," Energy, Elsevier, vol. 297(C).
    8. Naanaa, Anis, 2015. "Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 402-411.
    9. Gehad Ismail Sayed & Ashraf Darwish & Aboul Ella Hassanien, 2018. "A New Chaotic Whale Optimization Algorithm for Features Selection," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 300-344, July.
    10. Viacheslav Morozov & Artur I. Petrov & Vladimir Shepelev & Mohammed Balfaqih, 2024. "Ideology of Urban Road Transport Chaos and Accident Risk Management for Sustainable Transport Systems," Sustainability, MDPI, vol. 16(6), pages 1-32, March.
    11. Bingol, Harun & Alatas, Bilal, 2023. "Chaos enhanced intelligent optimization-based novel deception detection system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Tatsumi, Keiji & Ibuki, Takeru & Tanino, Tetsuzo, 2015. "Particle swarm optimization with stochastic selection of perturbation-based chaotic updating system," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 904-929.
    13. Hadi Mokhtari & Amir Noroozi, 2018. "An efficient chaotic based PSO for earliness/tardiness optimization in a batch processing flow shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1063-1081, June.
    14. Ghasemi, Mojtaba & Ghavidel, Sahand & Akbari, Ebrahim & Vahed, Ali Azizi, 2014. "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos," Energy, Elsevier, vol. 73(C), pages 340-353.
    15. Erdong Zhao & Jing Zhao & Liwei Liu & Zhongyue Su & Ning An, 2015. "Hybrid Wind Speed Prediction Based on a Self-Adaptive ARIMAX Model with an Exogenous WRF Simulation," Energies, MDPI, vol. 9(1), pages 1-20, December.
    16. Chen, Wei, 2015. "Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 125-139.
    17. Li, Chaoshun & Zhou, Jianzhong & Xiao, Jian & Xiao, Han, 2012. "Parameters identification of chaotic system by chaotic gravitational search algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 539-547.
    18. Tatsumi, Keiji & Obita, Yoshinori & Tanino, Tetsuzo, 2009. "Chaos generator exploiting a gradient model with sinusoidal perturbations for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1705-1723.
    19. Acharjee, P. & Mallick, S. & Thakur, S.S. & Ghoshal, S.P., 2011. "Detection of maximum loadability limits and weak buses using Chaotic PSO considering security constraints," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 600-612.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:84:y:2023:i:4:d:10.1007_s11235-023-01062-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.