IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v45y2004i2p279-286.html
   My bibliography  Save this article

Estimation of a normal mean relative to balanced loss functions

Author

Listed:
  • N. Farsipour

    ()

  • A. Asgharzadeh

Abstract

No abstract is available for this item.

Suggested Citation

  • N. Farsipour & A. Asgharzadeh, 2004. "Estimation of a normal mean relative to balanced loss functions," Statistical Papers, Springer, vol. 45(2), pages 279-286, April.
  • Handle: RePEc:spr:stpapr:v:45:y:2004:i:2:p:279-286
    DOI: 10.1007/BF02777228
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02777228
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dey, Dipak K. & Ghosh, Malay & Strawderman, William E., 1999. "On estimation with balanced loss functions," Statistics & Probability Letters, Elsevier, vol. 45(2), pages 97-101, November.
    2. Zellner, A., 1992. "Bayesian and Non-Bayesian Estimation using Balanced Loss Functions," Papers 92-20, California Irvine - School of Social Sciences.
    3. Chung Younshik & Kim Chansoo & Song Seongho, 1998. "Linear Estimators Of A Poisson Mean Under Balanced Loss Functions," Statistics & Risk Modeling, De Gruyter, vol. 16(3), pages 245-258, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez-Déniz, E., 2008. "A generalization of the credibility theory obtained by using the weighted balanced loss function," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 850-854, April.
    2. Cao, Ming-Xiang & He, Dao-Jiang, 2017. "Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 246-254.
    3. A. Asgharzadeh & N. Sanjari Farsipour, 2008. "Estimation of the exponential mean time to failure under a weighted balanced loss function," Statistical Papers, Springer, vol. 49(1), pages 121-131, March.
    4. Jerzy Baran & Agnieszka Stępień-Baran, 2013. "Sequential estimation of a location parameter and powers of a scale parameter from delayed observations," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 263-280, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:45:y:2004:i:2:p:279-286. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.